
Accelerating Möller Intersection Algorithm Using Ray Packets
Kazuhiko Komatsu∗ Yoshiyuki Kaeriyama∗ Kenichi Suzuki∗ Hiroaki Kobayashi∗ Tadao Nakamura∗

Abstract

Many implementation methods of ray tracing have
been proposed, however, execution time of ray-
primitive intersection tests still dominate the total ex-
ecution of rendering, and faster algorithms have been
strongly required. This paper presents a new fast al-
gorithm for the intersection tests between packets of
rays and triangles. Experimental results show that the
proposed algorithm achieves faster intersection tests by
exploiting the feature of the packets of rays.

keywords: ray tracing, intersection algorithm, ray
packet, ray bundle

1 Introduction

A basic ray tracing algorithm was founded in 1980s,
and since then many implementation methods have
been proposed so far. Although ray tracing can gen-
erate photo realistic images, the huge computation of
ray tracing makes quick image generation very diffi-
cult. The most computation comes mainly from the
intersection tests between rays and objects. Therefore,
it is essential to boost their processing speed in order
to achieve interactive ray tracing.

Recently, the SIMD operations have attracted a lot
of attention and have been an indispensable factor of
fast ray tracing. Although traditional ray tracers pro-
cess each ray independently, recent ray tracers have
processed a set of coherent rays together because they
tend to need similar calculations. A set of coherent rays
is called a ray packet, which usually consists of a group
of some primary rays, shadow rays, or diffuse rays as
shown in Figure 1. Effectively treating the ray pack-
ets leads to the efficient use of SIMD operations and
exploitation of memory reference locality[1]. However,
the SIMD intersection algorithms between ray packets
and objects have not fully been established.

In this paper, we propose a new intersection algo-
rithm for packet-triangle intersection tests. By exploit-
ing the special property of ray packets, it can perform
fast intersection tests.

This paper is organized as follows. Section 2 shows
related work. In Section 3, after briefly reviewing the
base intersection algorithm, this paper proposes a new
packet-triangle intersection algorithm. In Section 4,
we evaluate the performance of the proposed algorithm
through experimental results. Section 5 gives conclud-
ing remarks and future work.

∗Graduate School of Information Sciences, Tohoku
University

Primary

Ray Packet

Diffusion Ray Packet

Shadow Ray Packet

Figure 1: Various ray packets

2 Related Work

A lot of ray-triangle intersection algorithms have been
proposed in the field of computer graphics. The pro-
jection intersection test and the Pluecker intersection
test have been used for recent ray tracers[1][2].

In the original projection test, which is based on the
barycentric coordinates test[3], the edges and the nor-
mal of a triangle and the plane to be projected are
recalculated for every intersection test with this trian-
gle although these values are always the same. The
projection intersection test has been improved by re-
ducing these redundant recalculations and exploiting
the computational power of current CPU resources.

The Pluecker intersection test[4] quickly performs
the most inside loop of the intersection tests. The
Plucker inner product represents the position between
two lines. The Pluecker inner product is defined as
L0 ∗ L1 = U0 · V1 + U1 · V0 for two lines L0 = [U0, U1]
and L1 = [V0, V1] in the Pluecker coordinates, where ·
denotes a standard dot product. If the Pluecker inner
product equals to zero, two lines intersect; otherwise,
the two lines do not intersect and the relation either
front side or back side is shown by its sign. By tak-
ing the Pluecker inner products of a ray and the three
edges of a triangle, the ray-triangle intersection can be
tested. If all the Pluecker inner products between the
ray and the three edges have the same sign, the ray
intersects the triangle.

The Pluecker intersection test has been improved by
using ray packets[2]. It reduces intersection calculation

265

LI-004

FIT2007（第6回情報科学技術フォーラム）



O

P0

P1

P2

N
E1

E2

D

Figure 2: A ray and a triangle

by translating the origin of a ray packet to the origin
of the coordinates. Only three dot instructions are re-
quired in the most inside loop of the intersection tests.

Although the projection test is suitable for the ray-
triangle intersection test, it is not optimized for the
packet-triangle intersection test because it does not ex-
ploit the property of the packet at all. The Pluecker
test is widely used for the packet-triangle intersection
test, however, the intersection time is not enough short
to the interactive ray tracing. We focus on another
intersection algorithm and optimize it for the packet-
triangle in order to achieve faster packet-triangle inter-
section tests.

3 Intersection Algorithm

3.1 Möller-Trumbore Intersection Test

The Möller-Trumbore intersection test is one of the
most widely used methods for fast ray-triangle inter-
section algorithm[5]. Consider a ray R going from the
origin O to the direction D and a triangle with vertexes
P0, P1, and P2 shown in Figure 2. From a ray R(t) =
O+ tD and a point T (u, v) = (1−u−v)P0 +uP1 +vP2

on a triangle, the solution of the hit point between the
ray and the triangle is obtained by: t

u
v

 = − 1
(D × E2) · E1

 (S × E1) · E2

(D × E2) · S
(S × E1) · D

 (1)

where S = O − P0, N = E1 × E2, E1 = P1 − P0, and
E2 = P2 − P0. In implementation, (D × E2) · E1 is
first calculated and tested whether the triangle is front
side or not. Then, u and v are calculated and checked
whether they meets 0 ≤ u, 0 ≤ v, and u + v ≤ 1
respectively. Finally, the distance t is calculated. In
this intersection test, the edges and the normal of a
triangle are recalculated for every intersection test as
well as the original projection test.

The Möller-Trumbore intersection algorithm has
been improved by omitting the redundant calculations
[6]. In order to omit the calculation of the edges and
the normal, the scalar triple product rules are applied

Precomputation
for the triangles

Ray packet 
generation

Precomputation
for the packet

Intersection tests

Finish?

Yes

No

Figure 3: Flowchart of proposed packet-triangle in-
tersection test

to Equation (1). Equation (1) is represented as follows: t
u
v

 = − 1
N · D

 N · S
−(D × S) · E2

(D × S) · E1

 (2)

Since the terms including the edges and the normal
are independent in Equation (2), these values can be
precomputed. Thus, it achieves faster intersection tests
than the original one.

In order to boost the intersection tests, it is essen-
tial to exploit the property of ray packets with SIMD
operations. However, this algorithm is not suitable for
dealing with ray packets. By optimizing this algorithm
for the packet-triangle intersection tests, the intersec-
tion calculation time can be shorter than that of the
Pluecker intersection test.

3.2 Proposed Packet-Triangle Intersec-
tion Test

We propose a new packet-triangle intersection algo-
rithm based on the Möller intersection. As described
in Section 3.1, the algorithm can be further optimized
for packet-triangle intersection tests.

Effectively treating ray packets brings a great bene-
fit to achieve high speed intersection tests. Basically,
a set of coherent rays, which are like primary rays,
shadow rays, and diffuse rays, performs similar inter-
section tests with triangles, and thus the memory refer-
ence regarding the set shows the high locality. Treating

266

FIT2007（第6回情報科学技術フォーラム）



Stanford Bunny(69451tri) Dragon(871414tri) Happy Buddha(1087716tri)

Armadillo(345944tri) Asian Dragon(7219045tri) Thai Statue(10000000tri)

Figure 4: Test scenes

multiple coherent rays together causes better memory
accesses and efficient use of SIMD operations and result
in boosting the intersection test.

More amount of calculation is able to be precom-
puted by using the property of the ray packets that all
the origins of rays in the ray packet are same. Thus, al-
though the terms in Equation (2) related with the ray
direction D cannot be precomputed, the other terms
are able to be precomputed because only the ray di-
rections D are not constant during a packet-triangle
intersection test.

In Equation (2), N ·S is constant because the rays in
the packet share the same origin O. By calculating and
saving N · S of the ray packet in advance, the amount
of calculation can be reduced. In Equation (2), only
N · S can be precomputed. However, by applying the
scalar triple product rules, we can obtain the improved
equation.

 t
u
v

 = − 1
N · D

 N · S
D · (−S × E2)
D · (S × E1)

 (3)

In this equation, since N · S, −S × E2, and S × E1

are constant, they can be precomputed for each ray
packet. Figure 3 shows the flowchart of our proposed

intersection test. The new precomputation process is
shown as the dotted box. The precomputation expects
to allow for efficient reduction of the computation cost
of the intersection tests.

Compared with the Pluecker intersection test using
packets, our proposed test method requires less in-
structions in implementation. Although the Pluecker
intersection test requires 16 SIMD operations for one
primitive-triangle test, our proposal test requires only
14 SIMD operations at maximum.

Furthermore, our algorithm can introduce the early
termination. In the proposed algorithm, several con-
ditional tests are performed in one intersection test as
Möller-Trumbore algorithm. If one of the checks does
not pass, no more calculation is necessary. This makes
the intersection test quick. Early termination of the
projection algorithm and the Pluecker algorithm can-
not be done effectively because the conditional tests are
performed at the end of the intersection test.

4 Experimental Results and Dis-
cussion

In order to evaluate the proposed intersection algo-
rithm, we implemented it on a PC consisting of In-

267

FIT2007（第6回情報科学技術フォーラム）



tel Pentium 4 processor running at 3.4GHz with 2GB
DDR memory. Experiments were conducted by gener-
ating images from Stanford data archives[7] shown in
Figure 4. All these images of 256×256 resolutions were
generated by 2×2 ray packet of primary rays. In order
to evaluate the performance of intersection algorithm,
no spatial data structure is used.

Figure 5 shows the comparison of the intersection
time. In the figure, the x-axis indicates the test scenes.
The y-axis indicates the speedup ratio of the inter-
section time of the improved projection method, the
Pluecker method using ray packets, and our proposed
method to those of the improved Möller method[6].
Note that only the Pluecker intersection algorithm and
our proposed algorithm save the redundant computa-
tions by exploiting the property of the ray packets.

This figure shows that our algorithm achieves faster
intersection tests than those of the other algorithms.
Although the arrangement of the triangles in the scenes
affects the performance of the intersection test, our
proposed method achieves about 1.1x to 1.4x speedup
for all the test scenes. Compared with the Pluecker
packet-triangle intersection test, our algorithm achieves
speedup even in Asian Dragon scene although the
Pluecker algorithm drops the performance.

One of the reasons of the speedup is due to less oper-
ations required for the intersection test. As mentioned
in Section 3.2, the number of instructions of our algo-
rithm is less than that of the other ones. The second
reason is that early termination reduces the number of
operations. Usually several conditional tests should be
performed in one iteration. However, if the condition
is not satisfied to pass the check, another iteration can
begin to be processed. From the analysis of the early
termination, more than 75% of the ray-packet intersec-
tion tests benefit from the early-termination before the
final test. This early termination makes the intersec-
tion time short.

Although only primary ray packets are used in
these experiments, our proposed method works for the
shadow ray packets and diffuse ray packets because of
sharing common origin and high coherent of these pack-
ets.

5 Conclusions

In this paper, we proposed the new fast intersection
algorithm for ray-packet intersection tests. To increase
the portion of precomputation by exploiting the fea-
ture of ray packets, the redundant computation can be
removed for the fast intersection test.

We have implemented and evaluated our proposed
intersection algorithm on a PC. The experimental re-
sults illustrated the achievement of faster intersection
tests in comparison with other intersection algorithms.
Our proposed algorithm achieves a 1.4x speedup at the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Bunny Dragon
Happy
Buddha

Armadillo
Asian

Dragon
Thai

Statue

S
p

e
e

d
u

p

Test Scenes

47.2
(sec.) 606 746 277 3524 6460

Moller Projection Pluecker(packet) Proposed

Figure 5: Comparison of intersection algorithms

maximum. The algorithm exploits the powerful com-
putation power of current CPU resources like SIMD
operations and high bandwidth caches.

Our future work includes the combination of the pro-
posed algorithm and the spatial data structure, which
is one of the methods to reduce the number of the in-
tersection tests. It is expected that this combination
leads to the interactive ray tracing. Moreover, more
detailed evaluation for not only the primary ray pack-
ets but also the shadow ray packets and the diffuse ray
packets is required. In addition, the development of
intersection algorithms for the dynamic scenes is our
future work.

References

[1] Ingo Wald. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Saarland Univer-
sity University, 2004.

[2] Carsten Benthin. Realtime Ray Tracing on Current
CPU Architectures. PhD thesis, Saarland Univer-
sity University, 2006.

[3] Didier Badouel. An efficient ray polygon intersec-
tion. Graphics Gems, pages 390–393, 1990.

[4] Jeff Erickson. Pluecker coordinates. Ray Tracing
News, 1997. http://www.acm.org/tog/resources/
RTNews/html/rtnv10n3.html#art11.

[5] Tomas Möller and Ben Trumbore. Fast, minimum
storage ray triangle intersection. Graphics Tools,
2(1):21–28, 1997.

[6] Ronen Barzel, editor. Graphics Tools - the jgt edi-
tors’ choice. A K Peters, Ltd, 2005.

[7] Stanford Computer Graphics Laboratory. The
Stanford 3D Scanning Repository. http://www-
graphics.stanford.edu/data/3Dscanrep/.

268

FIT2007（第6回情報科学技術フォーラム）




