
Three stages pipelined MD5 implementation on FPGA
Hoang Anh Tuan† Katsuhiro Yamazaki† and Shigeru Oyanagi†

１．Introduction

Message 100..0 length

Y0 Y1 YL-1

512 512 512

Lx512 bits

…

HMD5 Init HMD5 HMD5

128

Padding Length

Message 100..0 length

Y0 Y1 YL-1

512 512 512

Lx512 bits

…

HMD5 Init HMD5 HMD5

128

Padding Length

Figure 1. MD5 algorithm.

The hash algorithm or message digest algorithm is used to
generate a unique message digest for an arbitrary message. The
digest must have three characteristics of easily to compute,
hardly to inversely compute message from the digest, and hardly
to find other message with same message digest [1].

Several message digest algorithms have been developed such
as the SHA or MD5 algorithms. They are used to guarantee the
correctness of the transmitted data. Some implementations of
MD5 on the FPGA were introduced. The SIG-MD5 [2] was
introduced with parallel and pipeline implementation patterns to
increase the throughput to 725 Mbps with 7997 slices on Xilinx
Vertex-II XC2V4000-6 FPGA chip. Other full-loop-unrolling
and iterative looping architecture were introduced with 351
Mbps and 165 Mbps of throughput respectively [3].

Figure 2. Compression algorithm.

F, T[i], X[k0(i)]; 16 steps

G, T[i], X[k1(i)]; 16 steps

H, T[i], X[k2(i)]; 16 steps

I, T[i], X[k3(i)]; 16 steps

+ + + +

512 128

128

F, T[i], X[k0(i)]; 16 steps

G, T[i], X[k1(i)]; 16 steps

H, T[i], X[k2(i)]; 16 steps

I, T[i], X[k3(i)]; 16 steps

+ + + +

512 128

128

In this paper, we introduce our work of 3 stages pipeline MD5
implementation on FPGA, called PPMD5. This work breaks the
data dependency of a single step inside the main loop of the
MD5 algorithm into 3 stages and makes them pipelined. The
implementation achieves 704 Mbps and uses 1010 hardware
slices with no BRAM on Xilinx Vertex-II XC2V4000-6 FPGA
chip.

2 ．The MD5 algorithm
The MD5 algorithm is widely used in public key

cryptographic algorithm and internet communication to guaranty
the message’s integrity and authentication. It calculates 128 bit
digest from an arbitrary message through 4 steps of appending
padding bits (Padding), appending length (Length), initialization
(Init), and message compression (HMD5) as can be seen in Figure
1.

(1) Appending padding bits is used to guarantee that the length
of the appended message is able to divide into 512-bit blocks. It
adds a single 1-bit and multiple 0s into the original b-bit message
until the length of the message is congruent to 448, modulo 512.

(2) A 64-bit representation of the length of the original
message is added into the result of (1) in this step. After this, the
final length of the message will be a multiple of 512 bits.

(3) The initialization step starts the 128-bit message digest as 4
words of 32-bit, called A, B, C, D. At the beginning, they are
initiated as constants.
 A = 0x67452301
 B = 0xefcdab89 [1]
 C = 0x98badcfe
 D = 0x10325476

(4) Message compression (HMD5) is the heart of the MD5
algorithm. It processes all 512-bit blocks (Y0 to YL-1) of the

padded message in sequence form the first one, compresses them
into 128 bit message digest. The HMD5 step handles the 512-bit
input data as 16-bit words, represent for 16 keys (X0 .. X15).

The initial values of 128-bit message digest of A, B, C, D are
stored as AA, BB, CC, and DD for the later usage. The algorithm
consists of four rounds, and comprises 16 steps each as shown in
Figure 2. Hence, 64 steps are performed in the algorithm,
denoted by i. Inside the HMD5, functions (Func) F, G, H, and I
represent four functions, specified for the four rounds:
 F(B, C, D) = (B^C) ⋁ (~B^D)
 G(B, C, D) = (B^D) ⋁ (C^~D) [2]
 H(B, C, D) = B ⊕ C ⊕ D
 I(B, C, D) = C ⊕ (B⋁ ~D)

T is a 64-elemrnt constant table and used by 64 steps. X is the
16-word keys with the location relies on the round and the
internal step. Address of the key in the 16-element key table
(X0..X15) is calculated depend on the round, named k0, k1, k2, and
k3 respectively:
 k0(i) = i
 k1 (i) = (1+5i) mod 16 [3]
 k2 (i) = (5+3i) mod 16
 k3 (i) = 7i mod 16

A single step of the compression algorithm is represented by
the equation [4]
 A = B + ((A+Func(B,C,D)+X[k]+T[i])<<< s) [4]

†Ritsumeikan University, Graduate School of Science and
Engineering

 A ← D; B ← A; C ← B; D ← C

61

LC-008

FIT2007（第6回情報科学技術フォーラム）

in which, <<< represents a circle shift left operation. The bit-
shift value s depends on the step number and is extracted from a
16-element table.

The final values A, B, C, D of the message compression
function HMD5 is generated by adding the results of 64 internal
loops with the initial values of AA, BB, CC, and DD,
respectively as can be seen in equation [5] and Figure 2.
 A = A + AA
 B = B + BB [5]
 C = C + CC
 D = D + DD

3 ．An architecture for the MD5 algorithm
Figure 3 shows the proposed architecture for the MD5 system.

The heart of the architecture is the HMD5 module, which performs
all equations [1] to [5]. The architecture in Figure 3 performs
steps 3 to 5 of the MD5 algorithm shown in section 2. The
message padding and length appending are not included in this
design, because they can be carried out simply by hardware or
software before writing into the memory.

Inputs of the design are as follows: the message is given to the
design as data in the memory (MEM). The data is divided into
blocks of 512-bit, written into continuous location. The addresses
of that data are controlled in the MD5 by a register. Number of
those blocks is known as init_number and provided from step 2.
That 64-bit number shows how many times the HMD5 module
must perform the calculation in order to finish the compression
for a long message. It is provided at the start time, together with
the start_new signal, and saved into register for later access. Start
address of the data is also provided as start_addr signal at this
time. The start_new signal will reset all registers into the initial
or provided values.

The readX signal shows that some of the 32-bit data (among
512-bit key) are still waiting in the memory. It is controlled by a
count-down register. It guarantees that 16 data of X are written
into HMD5 module each time.

The HMD5 module itself contains memory for the 16 32-bit
keys or X reg. Therefore, after the keys are read, this module can

work separately with the memory, and the memory can be
accessed by other processes such as processes for steps 1 and 2
in section 2. The readX signal is understood as data of new block
is available by the HMD5 and the HMD5 will start its process to
read keys for 16 times. The start signal simply reloads the initial
values shown in equation [1] into A-D. Details of the HMD5
module in this implementation are shown in section 5.

4. Data dependency, data movement and
pipelining methodology among steps
4.1 Data dependency and data movement

The tree in Figure 4 shows the data dependency in computing
the new value of B between two continuous steps. As can be
seen, the new value of B, calculated by equation [4] relies on
previous values of A, B, values of T, X, s and Func. X itself
relies on its location denoted by k, which must be calculated
from the step number i. Func depends on the previous values of
B, C, D and current step i. Figure 4 also shows that the new
value of B of the current step completely depends on the step and
previous values of A~D. However, the internal values of T, k, X
can be pre-computed because they rely on the step number i only.
A can also be predicted within some steps before.

Figure 5 shows the data movement of A within 2 steps before
from the current step, in which u shows the values that changes
at each step. In order to compute the required B value at current
step, A is required at current step. That value is transferred from
D and C at 1 and 2 steps before respectively, which means the
value of A at current step can be defined at 2 steps before as C.
4.2 Pipelining methodology

In this PPMD5 implementation, we manage to implement a
single step of MD5 into pipeline based on the data dependency in
equation [4]. As can be seen in Figure 4, the computation of B

Figure 4. Data dependency in single step.

A

i B C D

Funck

X

sT

B

A

i B C D

Funck

X

sT

B

Figure 3. An architecture for MD5 algorithm.

di do

di do

+

0
1

T
table

X reg

start
readX
X

ABCD_out
ready

HMD5

hash_out

MEM

init_number

0
115

-

-
ready

start_new

di do1
0

start_addr
X_addr

4

32

64

reg

reg

reg
di do

di do

++

0
1

T
table

X reg

start
readX
X

ABCD_out
ready

HMD5

T
table

X reg

start
readX
X

ABCD_out
ready

HMD5

hash_out

MEM

init_number

0
115

--

--
ready

start_new

di do1
0

start_addr
X_addr

4

32

64

reg

reg

reg

Figure 5. Trace of A within 2 steps.

A B C D

A u C D

[4]

A u u D

[4]

A ? u u

[4]
Required

computation

Current step

1 step before

2 steps beforeA B C D

A u C D

[4]

A u u D

[4]

A ? u u

[4]
Required

computation

Current step

1 step before

2 steps before

u: unknown values calculated at other steps
?: required computation value at current step

62

FIT2007（第6回情報科学技術フォーラム）

will require a huge sequenced computation of k, X, Func and 3
units of 32-bit adder. This generates an enormous latency.
However, if we re-write the equation [4] into
 A = B + ((A+T[i]+X[k]+Func(B,C,D))<<< s) [6]
 A ← D; B ← A; C ← B; D ← C
while giving a look to the trace of A, that latency can be divided
into smaller stages. Address of the key of the current step can be
pre-computed several steps before, because it relies mainly on
the step number i. The trace of A in Figure 5 allows us to define
value of A at current step as D or C at 1 or 2 steps before,
respectively. All that make A+T+X be able to pre-compute up to
3 steps before.

Figure 6 shows the methodology to divide the computations of
equation [6] into 3 pipeline stages of ATK, ATX and Fold. The
ATK stage computes values of A plus T (in equation [6]) and
address of the key (in equation [3]). The ATX stage receives
results of ATK stage in order to compute A+T+X[k] value.
Finally, all values are gathered to form B in the Fold stage. The
biggest latency occurs at Fold stage with the Func, shift and plus
operations.

Figure 7 shows the operations of those pipeline stages inside
64 steps of the HMD5 algorithm. When a compression of a key is
computed, it first goes to the ATK stage for preparation of A
plus constant before moving to the second stage of ATX. In ATX

stage, the data given by ATK stage is added with the required
key. At this time, the ATK module is used for the next data
preparation. Same operation occurs when data moves into the
Fold stage, the final result of required step is given while the
ATX and ATK modules are used to prepare values for the next
and 2 steps latter compression computations, respectively. In
order to complete the compression of one block of data, 65
clocks are required from the starting time.

A+T

i B C D

Func

k

X

s

B

A T[i+2]

A+T+X

ATK

ATX

Fold

A+T

i B C D

Func

k

X

s

B

A T[i+2]

A+T+X

ATK

ATX

Fold

Figure 6. Pipelining methodology.

ATK ATK0 ATK1 ATK2 ATK63

Fold0 Fold1 Fold2 Fold63

ATX0 ATX1 ATX2 ATX63ATX

Fold

…

…

…

0 1 … 63counter

ATK ATK0 ATK1 ATK2 ATK63

Fold0 Fold1 Fold2 Fold63

ATX0 ATX1 ATX2 ATX63ATX

Fold

…

…

…

0 1 … 63counter

Figure 7. Pipeline operations.

5．Implementation
5.1 Data implementation

There are 4 different data with different length involved in the
design of the MD5 algorithm. They include the keys, constant
values, shift values, and the message digest data. In this
implementation, the keys and digest data are designed as
matrixes of registers that contain 16 and 4 elements respectively.
The constant is designed as a 64-element hardware look-up-table.
The s value used for the shift operation is specified as 16 cases
shift unit. Other intermediate data are specified as 32-bit registers.
5.2 Pipeline implementation of the compression
function

Figure 8 shows the pipeline implementation of the
compression module HMD5. It contains 3 stages of ATK, ATX,
and Fold as described in section 4. Those stages contact to the
other through intermediate register or pipeline registers AT, k
and ATX. Register AT is used to store C+T value, which means

Figure 8. Pipeline design of HMD5.

ATT0
T1

T63

counter (6)
A B C D

State
controller

k

X0
X1

X15

ATX

k(i)

Func

<<<s

Keys in 32

reg

MUX
64

ATK ATX Fold

addressdata control

+

+

+

2

+

+

reg

reg

reg reg

regreg

ATT0
T1

T63

counter (6)
A B C D

State
controller

k

X0
X1

X15

ATX

k(i)

Func

<<<s

Keys in 32

reg

MUX
64

ATK ATX Fold

addressdata control

++

++

++

2

++

++

reg

reg

reg reg

regreg

63

FIT2007（第6回情報科学技術フォーラム）

A+T at Fold stage. Location of the key is stored in k register,
which means k(i+2) at the ATK stage. ATX register represents
the addition of that 3 data for the current step. The registers AT
and k are used to connect ATK and ATX stage while the register
ATX is used to connect ATX and Fold stage.

The ATK stage contains two computation units of plus (+) and
k(i). The plus module simply adds two 32-bit data of A and
constant T[i] in equation [6] together. The k(i) module is the
implementation of equation [3]. However, this stage occurs at
two steps (clocks) before the current Fold stage. Hence, the
counter is i+2 in the T[i] and k(i) module while A is taken as C
following the trace shown in Figure 5. After this stage, value of
A+T and address of the corresponding key are stored and
transferred to the ATX stage. The plus module in ATX takes
value of key at address shown by k and value of AT register
before adding them together and stores into the ATX register for
the Fold stage. The Fold stage completes the computation of
equation [6] using Func module that represents operation of
equation [2], <<<s module that specifies the circle shift for s bit,
and two plus modules. Result of this is written back to the digest
value A~D following equation [6].

6．Implementation results and discussion
The pipelined MD5 design was implemented on the Virtex-II

XC2V4000-6 devices and compiled by Xilinx ISE 8.1 version.
Table 1 shows the results of the PPMD5 pipelined
implementation. The throughput of the design is calculated by
((frequency*block size) / clocks per block) achieves 704.3 Mbps.
In this design, all the memory is used as registers inside the
hardware. Therefore, the hardware size becomes large with 1010
hardware slices in use. The hardware size can be reduced
significantly if large memory such as constant table (T) or the
key table can be used as memory in BRAM.

There are some other implementations, which achieve very
high throughput, up to 2Gbps and 5Gbps by parallel execution
such as SIG-MD5-HT4p and SIG-MD5-HT10i [2]. However,
their pipeline implementation methodology is completely
different from this research. They make pipeline by dividing the
64-step operation into 2, 4, 32 or 64 stages. This helps to reduce
difficulties inside a single step but increases the hardware size
significantly in order to complete all 64 steps. The high

throughput will be achieved by compressing several messages at
the same time in parallel. On the contrary, this design tries to
increase throughput by breaking a single step into 3 stages that
can be managed in pipeline. It makes each of them simpler and
faster. Therefore, the PPMD5 implementation achieves a good
tradeoff between hardware size and throughput in comparison
with others. This design divided a single step into smaller stages;
hence has no conflict with the previous implementations such as
SIG-MD5 systems. Those techniques of SIG-MD5 can also be
applied together with PPMD5 to make two-layer pipeline
systems.

Effectiveness of the pipeline architecture in this
implementation can be seen in Table 2. Delay of PPMD5 shows
the logic delay in pipeline implemented HMD5 module, while
delay of Normal MD5 shows the logic delay of the implemented
HMD5 module without pipeline technology. Breaking the single
step shown in Figure 4 into 3 small stages helps to decrease the
delay of normal implementation into 2/3 in the PPMD5
implementation. However, the hardware size slightly increases
from 972 slices of the normal implementation to 1010 slices due
to the overhead of pipelining in PPMD5 implementation.

As can be seen in Figure 8 and Table 2, the Fold stage is not
equal in hardware complexity and delay time in comparison with
other stages. Hence, the main delay of the system occurs in this
stage. Breaking the Fold stage into 2 not only makes equal in
computation time among stages but also helps to increase
frequency. However, one more clock will be required for every
step computation. In this case, throughput can be increased if
parallel mechanism is used to compute MD5s of 2 messages
simultaneously. Besides, the combination of separating the
PPMD5 architecture into steps and making parallel message
input in the same manner with SIG-MD5 system is also another
method to increase the throughput for PPMD5 architecture.

7．Conclusion
This paper described the implementation of the core of MD5

algorithm into 3-stage pipeline. The results show that this
architecture achieves good tradeoff between hardware and
throughput. The pipeline implementation achieves 704.3 Mbps.
It required 1010 slices on the XC2V4000 device. The
implementation also should be improved with more stages
pipelining in combination with parallel message compression in
order to get higher hardware/throughput tradeoff.

0

BRAMs

704.38886318871010Virtex-II
XC2V4000-6PPMD5

Name Throughput
(Mbps)

Clock
(MHz)

Flip
FlopsLUTsSlicesDevice

0

BRAMs

704.38886318871010Virtex-II
XC2V4000-6PPMD5

Name Throughput
(Mbps)

Clock
(MHz)

Flip
FlopsLUTsSlicesDevice

Table 1. Implementation results of the compression
function

Reference
[1] RFC 1321 – The MD5 Message-Digest Algorithm
[2] K.Jarvinen et al.: Hardware Implementation Analysis of

the MD5 Hash Algorithm, Proc 38th IEEE International
Conference on System Sciences-2005. Table 2. Delay of the modules

17.38

Normal
MD5

11.3511.2599.2Delay (ns)

Stage PPMD5FoldATXATK

17.38

Normal
MD5

11.3511.2599.2Delay (ns)

Stage PPMD5FoldATXATK
[3] J. Deepakumara et al.: FPGA Implementation of MD5

Hash Algorithm, Proc of the Canadian Conference on Electrical
and Computer Engineering, CCECE 2001, Vol.2, pp.919-924,
2001.

64

FIT2007（第6回情報科学技術フォーラム）

	4.1　Data dependency and data movement
	4.2　Pipelining methodology
	5.1　Data implementation
	5.2　 Pipeline implementation of the compression function

