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Abstract

In a convex grid drawing of a plane graph, all edges
are drawn as straight-line segments without any edge-
intersection, all vertices are put on grid points and all facial
cycles are drawn as convex polygons. A plane graph G has
a convex drawing if and only if G is internally triconnected,
and an internally triconnected plane graph G has a con-
vex grid drawing on an (n − 1) × (n − 1) grid if either G
is triconnected or the triconnected component decomposi-
tion tree T (G) of G has two or three leaves, where n is the
number of vertices in G. An internally triconnected plane
graph G has a convex grid drawing on a 2n × 2n grid if
T (G) has exactly four leaves. Furthermore, an internally
triconnected plane graph G has a convex grid drawing on
a 20n× 16n grid if T (G) has exactly five leaves.

In this paper, we show that an internally triconnected
plane graph G has a convex grid drawing on a 10n × 5n
grid if T (G) has exactly five leaves. We also present an
algorithm to find such a drawing in linear time.

1 Introduction

Recently automatic aesthetic drawing of graphs has created
intense interest due to their broad applications, and as a
consequence, a number of drawing methods have come out
[1, 2, 4, 5, 8, 9, 10, 11, 13]. The most typical drawing
of a plane graph is a straight line drawing, in which all
edges are drawn as straight line segments without any edge-
intersection. A straight line drawing is called a convex
drawing if every facial cycle is drawn as a convex polygon.
One can find a convex drawing of a plane graph G in linear
time if G has one [9].
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Figure 1: (a) Plane graph G and (b) subgraphs Gl, Gr

and Gc.

A convex drawing of a plane graph is called a con-
vex grid drawing if all vertices are put on grid points of
integer coordinates. Throughout the paper we assume for
simplicity that every vertex of a plane graph G has de-
gree three or more. Then G has a convex drawing if and
only if G is “internally triconnected,” that is, G can be
extended to a triconnected graph by adding a vertex in
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the outer face and joining it to all outer vertices [7, 12].
One may thus assume without loss of generality that G is
internally triconnected. If either G is triconnected or the
“triconnected component decomposition tree” T (G) of G
has two or three leaves, then G has a convex grid drawing
on an (n − 1) × (n − 1) grid and such a drawing can be
found in linear time, where n is the number of vertices of G
[1, 6]. An internally triconnected plane graph G has a con-
vex grid drawing on a 2n×2n grid if T (G) has exactly four
leaves [4, 8, 13]. Furthermore, an internally triconnected
plane graph G has a convex grid drawing on a 20n × 16n
grid if T (G) has exactly five leaves [5, 10]. Figure 1(a)
depicts an internally triconnected plane graph G, Fig. 3(c)
the triconnected component decomposition tree T (G) of G,
which has five leaves l1, l2, l3, l4 and l5.

In this paper, we improve the area in the case where
T (G) has exactly five leaves. More precisely, we show that
an internally triconnected plane graph G has a convex grid
drawing on a 10n× 5n grid if T (G) has exactly five leaves,
and present an algorithm to find such a drawing in linear
time.
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Figure 2: (a) convex grid drawings Dl of Gl, Dr of Gr,
and Dc of Gc, and (b) convex grid drawing D of G.

The algorithm is outlined as follows: we first divide a
plane graph G into a left subgraph Gl, a right subgraph Gr

and a center subgraph Gc as illustrated in Fig. 1(b) for the
graph in Fig. 1(a); we then construct convex grid drawings
with triangular contours of Gl and Gr and construct a
convex grid drawing with heptagonal contour of Gc by a
so-called shift method as illustrated in Fig. 2(a); we finally
combine these three drawings to a convex grid drawing
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with pentagonal contour of G as illustrated in Fig. 2(b).
The remainder of the paper is organized as follows. In

Section 2 we give some definitions and known lemmas. In
Section 3 we explain an algorithm for Gl, Gr and Gc. In
Section 4 we present our convex grid drawing algorithm.
Finally we conclude in Section 5.

2 Preliminaries

In this section, we give some definitions and known lem-
mas.

A W×H integer grid consists of W+1 regular vertical
grid lines and H+1 regular horizontal grid lines, and has a
rectangular contour. We callW andH the width and height
of the integer grid, respectively. We denote by W (D) the
width of a minimum integer grid enclosing a grid drawing
D of a graph, and by H(D) the height of D.

We denote by G = (V,E) an undirected connected
simple graph with vertex set V and edge set E. We often
denote the set of vertices of G by V (G) and the set of
edges by E(G). Throughout the paper we denote by n the
number of vertices in G. An edge joining vertices u and v
is denoted by (u, v). The degree of a vertex v in G is the
number of neighbors of v in G.

A plane graph G divides the plane into connected re-
gions, called faces. The unbounded face is called an outer
face, and the others are called inner faces. The boundary
of a face is called a facial cycle. A cycle is represented by a
clockwise sequence of the vertices in the cycle. We denote
by Fo(G) the outer facial cycle of G. A vertex on Fo(G)
is called an outer vertex. In a convex drawing of a plane
graph G, all facial cycles must be drawn as convex poly-
gons. The convex polygonal drawing of Fo(G) is called the
outer polygon. We call a vertex of a polygon an apex in
order to avoid the confusion with a vertex of a graph.

We call a vertex v of a connected graph G a cut ver-
tex if its removal from G results in a disconnected graph,
that is, G − v is not connected. A connected graph G is
biconnected if G has no cut vertex. We call a pair {u, v}
of vertices in a biconnected graph G a separation pair if
its removal from G results in a disconnected graph, that
is, G − {u, v} is not connected. A biconnected graph G
is triconnected if G has no separation pair. A biconnected
plane graph G is internally triconnected if, for any separa-
tion pair {u, v} of G, both u and v are outer vertices and
each connected component of G−{u, v} contains an outer
vertex.
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Figure 3: (a) Split components of the graph G in
Fig. 1(a), (b) triconnected components of G, and (c)
a decomposition tree T (G).

Let G = (V,E) be a biconnected graph, and let {u, v}
be a separation pair of G. Then, G has two subgraphs
G′

1 = (V1, E
′
1) and G′

2 = (V2, E
′
2) satisfying the following

two conditions (a) and (b).

(a) V = V1 ∪ V2, V1

∩
V2 = {u, v}; and

(b) E = E′
1 ∪ E′

2, E
′
1

∩
E′

2 = ∅, |E′
1| ≥ 2, |E′

2| ≥ 2.

For a separation pair {u, v} of G, G1 = (V1, E
′
1 + (u, v))

and G2 = (V2, E
′
2 +(u, v)) are called split graphs of G with

respect to {u, v}. The new edges (u, v) added to G1 and
G2 are called the virtual edges. Even if G has no multiple
edges, G1 and G2 may have. Dividing a graph G into two
split graphs G1 and G2 is called splitting. Reassembling
the two split graphs G1 and G2 into G is called merging.
Merging is the inverse of splitting. Suppose that a graph
G is split, the split graphs are split, and so on, until no
more splits are possible, as illustrated in Fig. 3(a) for the
graph in Fig. 1(a) where virtual edges are drawn by dotted
lines. The graphs constructed in this way are called the
split components of G. The graph in Fig. 1(a) has nine split
components illustrated in Fig. 3(a). The split components
are of three types: a triconnected graph; a triple bond
(i.e. a set of three multiple edges); and a triangle (i.e. a
cycle of length three). The triconnected components of G
are obtained from the split components of G by merging
triple bonds into a bond and triangles into a ring, as far as
possible, where a bond is a set of multiple edges and a ring
is a cycle. Thus the triconnected components of G are of
three types: (a) a triconnected graph; (b) a bond; and (c)
a ring (which is not a triconnected graph, of course). The
split components of G are not necessarily unique, but the
triconnected components ofG are unique [3]. Two triangles
in Fig. 3(a) are merged into a single ring, and hence the
graph in Fig. 1(a) has eight triconnected components as
illustrated in Fig. 3(b).

For a separation pair {u, v} of G, two triconnected
components Hi and Hj (i ̸= j) are called the triconnected
components of G with respect to {u, v} if it is possible to
merge Hi with Hj at {u, v}. Let T (G) be a tree such that
each node corresponds to a triconnected component Hi of
G and there is an edge (Hi, Hj), i ̸= j, in T (G) if and only
if Hi and Hj are triconnected components with respect to
the same separation pair, as illustrated in Fig. 3(c). We
call T (G) a triconnected component decomposition tree or
simply a decomposition tree of G [3].

We denote by ℓ(G) the number of leaves of T (G). Then
ℓ(G) = 5 for the graph G in Fig. 1(a). (See Fig. 3(c).) If
G is triconnected, then T (G) consists of a single isolated
node and hence ℓ(G) = 1.

The following three lemmas are known.

Lemma 1 [3] A decomposition tree T (G) of a graph G can
be found in linear time.

Lemma 2 [7] Let G be a biconnected plane graph in which
every vertex has degree three or more. Then the following
three statements are equivalent to each other:

(a) G has a convex drawing;

(b) G is internally triconnected; and

(c) both vertices of every separation pair are outer ver-
tices, and a node of the decomposition tree T (G) of G
has degree two if it is a bond.

Lemma 3 [7] If a plane graph G has a convex drawing D,
then the number of apices of the outer polygon of D is no
less than max{3, ℓ(G)}, and there is a convex drawing of
G whose outer polygon has exactly max{3, ℓ(G)} apices.

Since G is an internally triconnected simple graph and
every vertex of G has degree three or more, by Lemma 2
every leaf of T (G) is neither a bond nor a ring but a tri-
connected graph. Lemmas 2 and 3 imply that if T (G) has
exactly five leaves, that is, ℓ(G) = 5 then the outer poly-
gon of every convex drawing of G must have five or more
apices. Our algorithm finds a convex grid drawing of G
whose outer polygon is a pentagon and hence has exactly
five apices, as illustrated in Fig. 2(b).

In Section 3, we will present an algorithm to draw
the center subgraph Gc, the left subgraph Gl and the
right subgraph Gr. (See Fig. 2(a).) These algorithms
use the following “canonical decomposition.” Let G =
(V,E) be an internally triconnected plane graph, and let
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V = {v1, v2, . . . , vn}. Let v1, v2 and vn be three arbi-
trary outer vertices appearing counterclockwise on Fo(G)
in this order. We may assume that v1 and v2 are consec-
utive on Fo(G); otherwise, add a virtual edge (v1, v2) to
the original graph, and let G be the resulting graph. Let
Π = (U1, U2, · · · , Um) be an ordered partition of V into
nonempty subsets U1, U2, · · · , Um, where U1 ∪ U2 ∪ · · · ∪
Um = V and Ui ∩ Uj = ∅ for any indices i and j, 1 ≤ i <
j ≤ m. We denote byGk, 1 ≤ k ≤ m, the subgraph ofG in-
duced by U1∪U2∪· · ·∪Uk, and denote byGk, 0 ≤ k ≤ m−1,
the subgraph of G induced by Uk+1 ∪ Uk+2 ∪ · · · ∪ Um.
Clearly, Gk = G−Uk+1∪Uk+2∪· · ·∪Um andG = Gm = G0.
We say that Π is a canonical decomposition of G (with re-
spect to vertices v1, v2 and vn) if the following three con-
ditions (cd1)–(cd3) hold.

(cd1) Um = {vn}, and U1 consists of all the vertices on
the inner facial cycle containing edge (v1, v2).

(cd2) For each index k, 1 ≤ k ≤ m, Gk is internally
triconnected.

(cd3) For each index k, 2 ≤ k ≤ m, all the vertices in Uk

are outer vertices of Gk, and

(a) if |Uk| = 1, then the vertex in Uk has two or
more neighbors in Gk−1 and has one or more
neighbors in Gk when k < m, as illustrated in
Fig. 4(a); and

(b) if |Uk| ≥ 2, then each vertex in Uk has exactly
two neighbors in Gk, and has one or more neigh-
bors in Gk, as illustrated in Fig. 4(b).

Although the definition of a canonical decomposition
above is slightly different from the one given in [1], they are
effectively equivalent to each other. A canonical decompo-
sition Π = (U1, U2, · · · , U10) with respect to vertices v1, v2
and vn of the graph in Fig. 5(a) is illustrated in Fig. 5(b).

By the condition (cd3), one may assume that all the
vertices in Uk, 1 ≤ k ≤ m, consecutively appear clockwise
on Fo(Gk). We number all vertices of G by 1, 2, · · · , n so
that they appear in U1, U2, · · · , Um in this order. We call
each vertex in G by the number i, 1 ≤ i ≤ n. Thus one
can define an order < on the vertices in G. For a vertex u,
1 ≤ u ≤ n− 1, we denote by w∗(u) the largest neighbor of
u.

(a) (b)

G
k-1

G
k-1

U
kU

k

Figure 4: (a) Graphs Gk for which |Uk| = 1 and (b)
|Uk| ≥ 2.

The following lemma is known.

Lemma 4 [6] Assume that G is an internally triconnected
plane graph and ℓ(G) ≤ 3. Then one can find a canonical
decomposition Π of G in linear time if v1, v2 and vn are
chosen as follows.
Case 1: ℓ(G) = 3.

In this case, from each of the three triconnected com-
ponents corresponding to leaves of T (G), we choose an ar-
bitrary outer vertex of G which is not a vertex of the sep-
aration pair of the component.
Case 2: ℓ(G) = 2.
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Figure 5: (a) An internally triconnected plane graph
G, (b) a canonical decomposition Π of G, and (c) a
pentagonal drawing of G.

In this case, we choose two vertices from the two leaves
of T (G), similarly to Case 1 above. We choose an arbitrary
outer vertex of G other than them as the third one.
Case 3: ℓ(G) = 1.

In this case, G is triconneced. We choose three arbi-
trary outer vertices of G.

One can easily observe that Lemma 4 holds even if
exactly one (resp. two) of the outer vertex has (resp. ver-
tices have) degree two and the vertex is (resp. vertices are)
chosen as vn (resp. v2 and vn).

3 Extended Triangular drawing

Let G be a plane graph having a canonical decomposition
Π = (U1, U2, · · · , Um) with respect to vertices v1, v2 and vn,
as illustrated in Fig. 5(b). Miura [5] give a linear-time al-
gorithm, called the triangular drawing algorithm, to find a
convex grid drawing of G with a triangular outer polygon.
In this section, we present a linear-time algorithm, called a
extended triangular drawing algorithm extending the trian-
gular drawing algorithm, to find a convex grid drawing of G
with a pentagonal outer polygon. The algorithm is based
on the so-called shift methods given by Chrobak and Kant
[1] and de Fraysseix et al. [2]. This algorithm will be used
by our convex grid drawing algorithm to draw the left sub-
graph Gl, the right subgraph Gr and the center subgraph
Gc of G in Sections 4.2, 4.3, and 4.4, respectively.

We now outline the extended triangular drawing al-
gorithm. Let vl be an arbitrary vertex on the path going
from v1 to vn clockwise on Fo(G), and let vr be an ar-
bitrary vertex on the path going from vl to vn clockwise
on Fo(G) as illustrated in Fig. 5(a). Let V1 be the set of
all vertices on the path going from v1 to vl clockwise on
Fo(G), let V2 be an arbitrary vertex on the path going from
vl to vr clockwise on Fo(G) and let V3 be an arbitrary ver-
tex on the path going from vr to vn clockwise on Fo(G),
as illustrated in Fig. 5(a). The extended triangular draw-
ing algorithm finds a convex grid drawing of G whose outer
polygon is a pentagon with apices v1, vl, vr, vn and v2, such
that the side v1vl has slope −1 the side vlvr has slope ∞,
the side vrvn has slope +1, the side vnv2 has slope −1/2,
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and the side v2v1 has slope 0, respectively, as illustrated in
Fig. 5(c).

We are now ready to describe the extended triangular
drawing algorithm in detail. We first obtain a drawing
D1 of the subgraph G1 of G induced by all vertices in U1

as follows. Let Fo(G1) = w1, w2, · · · , wt, w1 = v1, and
wt = v2. We draw G1 as illustrated in Fig. 6, depending
on whether (v1, v2) is a real edge or not, and w2 ∈ V1 or
not.
Initialize:

Case 1: v1 and v2 are adjacent in an original graph G,
that is, (v1, v2) is a real edge (see Figs. 6(a) and (b)).
Set P (w1) = (0, 0);

Case 1(a): w2 ∈ V1 (see Fig. 6(a)).
Set P (wi) = (i− 3, 1) for each i, 2 ≤ i ≤ t− 1;
Set P (wt) = (t− 2, 0);

Case 1(b): w2 /∈ V1 (see Fig. 6(b)).
Set P (wi) = (i− 1, 1) for each i, 2 ≤ i ≤ t− 1;
Set P (wt) = (t, 0);

Case 2: Otherwise, that is, (v1, v2) is a virtual edge (see
Fig. 6(c)).
Set P (wi) = (i− 1, 0) for each i, 1 ≤ i ≤ t.

We then extend a drawing Dk−1 of Gk−1 to a draw-
ing Dk of Gk for each index k, 2 ≤ k ≤ m, similarly as
the algorithm by Chrobak and Kant for finding a con-
vex grid drawing of a triconnected plane graph [1]. For
each k, 2 ≤ k ≤ m, let Fo(Gk−1) = w1, w2, · · · , wt,
where w1 = v1, wt = v2, and w1, w2, · · · , wt appear clock-
wise on Fo(Gk−1) in this order, as illustrated in Fig. 7.
Let Uk = {u1, u2, · · · , ur}. By the condition (cd3) of a
canonical decomposition, one may assume that the ver-
tices u1, u2, · · · , ur in Uk appear clockwise on Fo(Gk) in
this order and that the first vertex u1 and the last one ur

in Uk have neighbors in Gk−1. (See Fig. 4.) Let wp be
the leftmost neighbor of u1, and let wq be the rightmost
neighbor of ur.

Let wf be the vertex with the maximum index f
among all the vertices wi, 1 ≤ i ≤ t, on Fo(Gk−1) that
are contained in V1, let wg be the vertex with the max-
imum index g among all the vertices wi, 1 ≤ i ≤ t, on
Fo(Gk−1) that are contained in V2 (in any) and let wh be
the vertex with the maximum index h among all the ver-
tices wi, 1 ≤ i ≤ t, on Fo(Gk−1) that are contained in V3

(in any), respectively Of couse, 1 ≤ f ≤ g ≤ f < t. We
denote by ̸ wi the interior angle of apex wi of the outer
polygon of Dk−1. We call wi a convex apex of the polygon
if ̸ wi < 180◦. We denote the current position of a vertex
v by P (v); P (v) is expressed by its x- and y-coordinates as
(x(v), y(v)). Assume that a drawing Dk−1 of Gk−1 satisfies
the following five conditions (sh1)–(sh5).

(sh1) P (w1) = (0, 0), x(wt) ≤ 3|V (Gk−1)| and y(wt) = 0.

(sh2) x(w1) > x(w2) > · · · > x(wf ), x(wf ) ≤ x(wf+1) ≤
· · · ≤ x(wt), where x(wi) is the x-coordinate of wi.

(sh3) Every edge (wi, wi+1), 1 ≤ i ≤ t− 1, has slope −1,
−1/2, 0 or [1,+∞].

(sh4) Every inner face of Gk−1 is drawn as a convex poly-
gon.

(sh5) Vertex wi, 2 ≤ i ≤ t− 1, has one or more neighbors

in Gk−1 if wi is a convex apex.

Indeed D1 satisfies the five conditions above. We ex-
tend Dk−1 to Dk, 2 ≤ k ≤ m, so that Dk satisfies the five
conditions, as follows.

In our algorithm, we wish to put the vertex u1 of Uk

on a grid point so that the edge (wp, u1) has slope such
that −1 (if u1 ∈ V1), +∞ (if u1 ∈ V2), +1 (if u1 ∈ V3),
or [1,+∞] (otherwise), respectively and put the vertex ur

on a grid point so that the edge (ur, wq) has slope −1/2.
Furthermore, if |Uk| ≥ 2, then we wish to put the vertices
u2, u3, · · · , ur−1 so that, for each i, 1 ≤ i ≤ r − 1, the

edges (ui, ui+1) has slope 0 and the distance between two
vertices ui and ui+1 is equal to 1. For this purpose, before
installing Uk = {u1, u2, · · · , ul} to Dk−1, we shift some
vertices of Gk−1 to the right as illustrated in Figs. 7(a)–
(d), as follows.

Let ϵ be 0 if u1 = w∗(wp), and 1 otherwise. If
x(wq) − x(wp) + ϵ is an odd number, as illustrated in
Fig. 7(a), then we shift wq, wq+1, · · · , wt of Gk−1 and some
inner vertices of Gk to the right by distance |Uk|, as il-
lustrated in Fig. 7(b). Otherwise, (x(wq) − x(wp) + ϵ
is an even number, as illustrated in Fig. 7(c),) we shift
wq, wq+1, · · · , wt of Gk−1 and some inner vertices of Gk to
the right by distance |Uk| + 1, as illustrated in Fig. 7(d).
Furthermore, if u1 ∈ V3, then we shift wq, wq+1, · · · , wt of
Gk−1 and some inner vertices of Gk to the right by distance
|Uk|.

w
t
=v2w1=v1 w

t
=v2

w1=v1 w
t

w1

w2

w2 w
t-1

w2 w
t-1

(a) (b) (c)

w
t-1

Figure 6: Drawings D1 of G1 (a), (b) for Case 1 and
(c) for Case 2.

(a) (b)
wtw1
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Gk-1

wq

(c)
w1

u1

wt
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Gk-1

wq
wf

(d)
w1

u1

wt

ul

Gk-1

wq

wf

wp

wtw1

u1=w
*(wp)

Gk-1

wq
wf

wp

wfwp wp

Figure 7: Graphs (a) Gk−1 and (b) Gk for Case
x(wq)− x(wp) + ϵ is an odd number, graphs (c) Gk−1

and (d) Gk for Case x(wq)−x(wp)+ ϵ is an even num-
ber.

Then, we install Uk to Dk−1 as follows.
Install Uk:

Case 1: u1 ∈ V1.
For each i, 1 ≤ i ≤ r, we set

x(ui) = 2x(wp)−x(wq)+2y(wp)− 2y(wq)+ r− 2+ i,

and set

y(ui) = −x(wp) + x(wq)− y(wp) + 2y(wq)− r + 1,

as illustrated in Figs. 8(a), (b);

Case 2: u1 ∈ V2.
For each i, 1 ≤ i ≤ r, we set

x(ui) = x(wp) + i− 1,

and set

y(ui) = y(wq)− (x(wp)− x(wq) + r − 1)× 1/2,

as illustrated in Figs. 8(c), (d);
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Case 3: u1 ∈ V3.
we set

x(ui) = (x(wp)+x(wq)/2−y(wp)+y(wq))×2/3+r−2+i,

and set

y(ui) = (−x(wp) + x(wq) + y(wp) + 2y(wq))× 1/3,

as illustrated in Figs. 8(e), (f);

Case 4: Otherwise.
For each i, 1 ≤ i ≤ r, we set

x(ui) = x(wp) + i− 1 + ϵ,

and set

y(ui) = y(wq)− (x(wp)− x(wq) + r − 1 + ϵ)× 1/2,

as illustrated in Figs. 8(g), (h) for the case ϵ = 0 and
in Figs. 8(i), (j) for the case ϵ = 1.

u1 u1

(a) (b)

wp=wf

wtw1

wp=wf

wtw1

ul

u1

(g) (h)

wf

wtw1

wf

wtw1

ulwp

u1

u1

(i) (j)

wtw1
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wf
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Gk-1Gk-1

Gk-1

Gk-1

wq

wq

wq
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wq wp

wq
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(c) (d)
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u1 u1

(e) (f)

wp=wf
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Figure 8: Installing Uk to Dk−1.

Clearly, the drawing Dk of Gk extended from Dk−1

satisfies conditions (sh1), (sh2) and (sh3). One can prove
similarly as in [1] that Dk satisfies conditions (sh4) and
(sh5). By the condition (sh1), we have x(v2) ≤ 2n in Dm of
Gm = G and hence one can easily show that the triangular
drawing algorithm yields a convex grid drawing of G on
a W × H grid with W ≤ 6n and H ≤ 3n. Furthermore,
one can easily show that the triangular drawing algorithm
takes linear time.

We thus have the following lemma.

Lemma 5 For a plane graph G having a canonical decom-
position Π = (U1, U2, · · · , Um) with respect to v1, v2 and vn,
the extended triangular drawing algorithm yields a convex
grid drawing of G on a W × H grid with W ≤ 6n and
H ≤ 3n in linear time.

Actually, the triangular drawing algorithm in [5] is
corresponding to a special case of the extended triangular
drawing algorithm for the case where vl = vr = vn. The
following lemma is known.

Lemma 6 [5] For a plane graph G having a canonical de-
composition Π = (U1, U2, · · · , Um) with respect to v1, v2
and vn, the triangular drawing algorithm yields a convex
grid drawing of G on a W × H grid with W ≤ 4n and
H ≤ 2n in linear time.

4 Convex Grid Drawing Algorithm

In this section, we present a linear-time algorithm to find a
convex grid drawing D of an internally triconnected plane
graph G whose decomposition tree T (G) has exactly five
leaves. Such a graph G does not have a canonical decom-
position, and hence none of the algorithms in [1] and [6]
can find a convex grid drawing of G. Our algorithm draws
the outer facial cycle Fo(G) as a pentagon such that the
five sides have slopes −1, ∞, +1, −1 and 0, respectively,
as illustrated in Fig. 2(b). The algorithm first divides a
plane graph G into a left subgraph Gl, a right subgraph
Gr and a center subgraph Gc as illustrated in Fig. 1(b),
then draw Gl, Gr and Gc by using the extended triangular
drawing algorithm in Section 3, respectively, in Fig. 2(a),
and finally combine these three drawings to a convex grid
drawing of G as illustrated in Fig. 2(b).

4.1 Division

We first explain how to divide G into Gl, Gr and Gc. (See
Figs. 1(a) and (b).)

One may assume that the five leaves l1, l2, l3, l4 and
l5 of T (G) appear clockwise in T (G) in this order, as il-
lustrated in Fig. 3(c). Clearly, there are three cases to
consider.

Case a: exactly one node u5 of T (G) has degree five and
each of the other non-leaf nodes has degree two as
illustrated in Fig. 9(a).

Case b: exactly one node u4 has degree four, exactly one
node u3 has degree three and each of the other non-
leaf nodes has degree two as illustrated in Fig. 9(b).

Case c: exactly three nodes ul3, uc3 and ur3 have degree
three and each of the other non-leaf nodes has degree
two as illustrated in Fig. 9(c).

(a) (b) (c)

l1

l2
l3

l4
l5

u5

l1

l2

l3

l4
l5

l1

l2

l3
l4

l5

u4

u3

u
l3
u
c3 u

r3

Figure 9: Decomposition trees T (G) (a) having a node
of degree five, (b) having a node of degree four and a
node of degree three, and (c) having three nodes of
degree three.

We only consider Case a, because the other cases are
identical.

As the five apices of the pentagonal contour of G, we
choose five outer vertices ai, 1 ≤ i ≤ 5 of G; let ai be
an arbitrary outer vertex in the component corresponding
to leaf li that is not a vertex of the separation pair of the
component. The five vertices a1, a2, a3, a4 and a5 appear
clockwise on Fo(G) in this order as illustrated in Fig. 1(a).

Let Path(li), 1 ≤ i ≤ 5, be a path from li to u5 in
T (G). We choose arbitrary two consecutive leaves li and

FIT2022（第 21 回情報科学技術フォーラム）

Copyright © 2022 by
The Institute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 5

第1分冊



li+1, where indices are computed as modulo 5. We then
split the graphs corresponding to Path(li)−u5, and corre-
sponding to Path(li+1)− u5 from G. Let Gl be the graph
corresponding to Path(li) − u5, let Gr be the graph cor-
responding to Path(li+1) − u5 and let Gc be the graph
corresponding to G − Gl − Gr. In Fig. 1(b), Gl is the
graph corresponding to Path(l1)− u5 and Gr is the graph
corresponding to Path(l2)−u5. Let {ul1 , ul2} be the sepa-
ration pair for Gl and Gc, let {ur1 , ur2} be the separation
pair for Gr and Gc, and let ul1 , ul2 , ur1 , ur2 appear around
Fo(G) in this order, as illustrated in Fig. 1(a).

If (ul1 , ul2) (resp. (ur1 , ur2)) is a real edge of G, then
one can easily know that the real edge (ul1 , ul2) (resp.
(ur1 , ur2)) is included in Gl (resp. Gr), by the definition of
Gl (resp. Gr) and Gc above. Therefore, Gl (resp. Gr) has
multiple edges (ul1 , ul2) (resp. (ur1 , ur2)) (one is real and
the other is virtual). In this case, let Gl (resp. Gr) be the
graph obtained by deleting the virtual edge (ul1 , ul2) (resp.
(ur1 , ur2)) from the graph defined above, as illustrated in
Fig. 1(b).

4.2 Drawing of Gl

By using Lemma 4, one can easily show that Gl has a
canonical decomposition Π = (U1, U2, · · · , Um) with re-
spect to v1 = ai, v2 = ul2 and vn = ul1 . Let G′

l be a
“mirror” copy of Gl. We first obtain a triangular draw-
ing of G′

l by using the extended triangular drawing algo-
rithm in Section 3 as v1 = ai, v2 = ul2 , vn = ul1 and
vl = vr = vn, respectively. We then modify the drawing of
G′

l using the left-right reflection and we obtain a triangular
drawing of Gl, as illustrated in Fig. 10(a). We then rotate
the drawing by 90◦ clockwise and obtain a drawing Dl of
Gl whose outer polygon is a triangle with apices ul1 , ai and
ul2 , such that the side aiul2 has slope ∞, the side ul2ul1
has slope −2, and the side ul1ai has slope −1, respectively,
as illustrated in Fig. 10(b). By Lemma 6, one can easily
show that W (Dl) ≤ 2nl and H(Dl) ≤ 4nl, where nl be the
number of vertices of Gl.

4.3 Drawing of Gr

By using Lemma 4, one can easily show that Gr has a
canonical decomposition Π = (U1, U2, · · · , Um) with re-
spect to v1 = ai+1, v2 = ur1 and vn = ur2 . We first
obtain a triangular drawing of Gr by using the triangular
drawing algorithm in Section 3 as v1 = ai+1, v2 = ur1 ,
vn = ur2 and vl = vr = vn, respectively, as illustrated in
Fig. 10(c). We then rotate the drawing by 90◦ clockwise
and obtain a drawing Dr of Gr whose outer polygon is a
triangle with apices ur1 , ai+1 and ur2 , such that the side
ur1ai+1 has slope ∞, the side ai+1ur2 has slope +1, and
the side ur2ur1 has slope +2, as illustrated in Fig. 10(d).
By Lemma 6, one can easily show that W (Dr) ≤ 2nr and
H(Dr) ≤ 4nr, where nr be the number of vertices of Gr.

4.4 Drawing of Gc

In this section, we present a linear-time algorithm, called a
heptagonal drawing algorithm to find a convex grid drawing
of Gc with a heptagonal outer polygon. This algorithm
finds a convex grid drawing of Gc whose outer polygon is a
heptagon with apices v1, ul1 , ul2 , ur1 , ur2 , vn and v2, such
that the side v1ul1 has slope −1, the side ul1ul2 has slope
−2, the side ul2ur1 has slope ∞, the side ur1ur2 has slope
+2, the side ur2vn has slope +1, the side vnv2 has slope
−1 and the side v2v1 has slope 0 respectively, as illustrated
in Fig. 2(a). We modify the extended drawing algorithm
in Section 3, as follows.

By using Lemma 4, one can easily show that Gc

has a canonical decomposition Π = (U1, U2, · · · , Um)
with respect to v1 = ai+4, v2 = ai+3 and vn =
ai+2. Let Fo(Gc) = w1, w2, · · · , wa−1(= ul1), wa(= ul2),
wa+1, · · · , wb−1(= ur1), wb(= ur2), · · · , wt, where w1 = v1,

(a) (b)

(c)

v
n
=u

l1

v1=aiv2=ul2

v
n
=u

r2

v1=ai

v2=ul2

v
n
=u

l1

v1=ai+1 v2=ur1

v1=ai+1

v2=ur1

v
n
=u

r2

(d)

Figure 10: (a) A triangular drawing of Gl, (b) a draw-
ing Dl of Gl, (c) a triangular drawing of Gr, and (d)
a drawing Dr of Gr.

wt = v2. We assume without loss of generality that
wa ̸= wb−1. The case for wa = wb−1 is identical.

We use the extended triangular drawing algorithm to
Gc as v1 = ai+4, v2 = ai+3, vn = ai+2, vl = ul1 and
vr = ur1 . Furthermore, we wish to put vertices wa and
wb so that the edge (wa−1(= ul1), wa(= ul2)) has slope −2
and the edge (wb−1(= ur1), wb(= ur2)) has slope +2, as
illustrated in Fig. 2(a). Actually, the method deciding the
coordinates of each vertex other than the vertices wa =
ul2 and wb = ur2 on Fo(Gc) is identical to the extended
triangular drawing algorithm. Thus we will explain how to
decide the coordinates of vertices wa = ul2 and wb = ur2
on Fo(Gc) .

We first explain how to decide the coordinates of wa =
ul2 . Let ul2 ∈ Uk, then ul2 should be the first vertex of Uk.
Let Uk = {ul2 = u1, u2, · · · , u|Uk|}, Let wp be the leftmost
neighbor of ul2 = u1, and let wq be the rightmost neigh-
bor of u|Uk|. Then wp = ul1 , of course. Let Fo(Gk−1) =
w1, w2, · · · , wp(= ul1), wp+1, · · · , wq, wq+1, · · · , wt, where
w1 = v1, wt = v2.

We first shift shift wq, wq+1, · · · , wt of Gk−1 and some
inner vertices of Gk to the right by distance |Uk|, as simi-
larly in the extended triangular drawing algorithm

Let Dpq = x(wq) − x(wp) + 2(y(wq) − y(wp)). We
wish to put vertices Uk = {ul2 = u1, u2, · · · , u|Uk|} so that
the edge (wp, wa) = (ul1 , ul2) has slope −2 and the edge
(u|Uk|, wq) has slope −1/2. Furthermore, if |Uk| ≥ 2, then
we wish to put vertices u2, u3, · · · , u|Uk|−1 so that, for each
i, 1 ≤ i ≤ |Uk| − 1, the edge (ui, ui+1) has slope 0 and
the distance between two vertices ui and ui+1 is equal to
1. Then Dpq − (|Uk| − 1) should be a multiple of 3, that
is, Dpq − (|Uk| − 1) mod 3 = 0 and hence we will do some
additional shift operations if Dpq − (|Uk| − 1) mod 3 ̸= 0.
That is, we shift wq, wq+1, · · · , wt of Gk−1 and some inner
vertices of Gk to the right by distance 3− ({Dpq − (|Uk| −
1)}mod3).

Then, Dpq − (|Uk| − 1) becomes a multiple of 3
and hence the straight line with slope −1 through
(x(wp), y(wp)) and the straight line with slope −1/2
through (x(wq)−(|Uk|−1), y(wq)) intersects at a grid point,
which is denoted by P .

In Section 4.5, we will combine the drawing Dl of
Gl and the drawing Dc of Gc so that the edge (ul1 , ul2)
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of Gl overlaps the same one of Gc. If the length of the
edge (ul1 , ul2) of Dl is not equal to the length of the edge
(ul1 , ul2) of Dc, then we widen the narrow one by the shift
operation so that both have the same length. There are
the two cases to consider.

Case (i): H(Dl) > y(P )− y(wp). (See Fig. 11(a).)
In this case, we shift wq, wq+1, · · · , wt of Gk−1 and
some inner vertices of Gk to the right by distance
(H(Dl)−(y(P )−y(wp))×3/2. In Fig. 11(a), (H(Dl)−
(y(P ) − y(wp)) is equal to 4 and hence we shift by
distance 6, as illustrated in Fig. 11(b). Since (H(Dl)−
(y(P ) − y(wp)) is multiple of 2, (H(Dl) − (y(P ) −
y(wp))×3/2 is multiple of 3 and henceDpq−3(|Uk|−1)
is still multiple of 3, as illustrated in Fig. 11(b).

Case (ii): H(Dl) ≤ y(P )− y(wp). (See Fig. 11(c).)
In this case, we extend the drawing Dl so that the
length of the edge (ul1 , ul2) ofDl is equal to the length
between P (wp) and P , as illustrated in Fig. 11(d).

We then put the vertices in Uk so that the edge (wp(=
ul1), wa(= ul2)) has slope −2 and the edge (u|Uk|, wq) has
slope −1/2. Furthermore, if |Uk| ≥ 2, then, for each i,
1 ≤ i ≤ |Uk|−1, we put vertices u2, u3, · · · , u|Uk|−1 so that
the edge (ui, ui+1) has slope 0 and the distance between
two vertices ui and ui+1 is equal to 2, as illustrated in
Figs. 11(b) and (d).

H(Dl)

(a) (b)

(c)

Gk-1

wq

(|Uk|-1)
Dl

P

Gk-1

wqDl

ul2=u1 u|Uk|

H(Dl)

Gk-1

wq

(|Uk|-1)

wp=ul1

wp=ul1

P

wp=ul1

Dl

Gk-1

wq

wp=ul1

Dl

ul2=u1 u|Uk|

(d)

Figure 11: Illustrations for (a),(b) Case (i), and (c),(d)
Case (ii).

We then explain how to decide the coordinates of wb =
ur2 . Let ur2 ∈ Uk′ , then ur2 should be the first vertex
of Uk′ . Let Uk′ = {ur2 = u′

1, u
′
2, · · · , u′

|Uk′ |}, let wp be

the leftmost neighbor of ur2 = u′
1, (wp = ur1 , of course,)

and let wq be the rightmost neighbor of u′
|Uk′ |. Then we

wish to put vertices Uk′ = {ur2 = u′
1, u

′
2, · · · , u′

|Uk′ |} so

that the edge (wp, wb) = (ur1 , ur2) has slope +2 and the
edge (u′

|Uk′ |, wq) has slope −1/2. Thus one can decide the

coordinates of vertices in Uk′ similarly as above, in a sense
that Dpq − (|Uk′ | − 1) should be a multiple of 5.

We finally prove the correctness of the heptagonal
drawing algorithm. One can prove similarly as in [8] that
the drawing Dc is a convex grid drawing of Gc.

We then consider the width W (Dc) and the height
H(Dc) of the drawing Dc of Gc. Let nl be the number of
vertices of Gl, let nr be the number of vertices of Gr and
let nc be the number of vertices of Gc. Then nl+nr+nc =
n+4, of course. Since every vertex of a plane graph G has
degree three or more, each components corresponding to
li of T (G), for each i, 1 ≤ i ≤ 5 has four or more vertices
and hence we have nl, nr ≥ 4 and nc ≥ 10. One can easily
observe that we may shift by distance 2+2+H(Dl)×3/2 for
the vertex wa = ul2 and by distance 2 + 1 + 4 +H(Dr)×
5/2 for the vertex wb = ur2 , respectively, and hence we
have W (Dc) ≤ 6nc + 6 + H(Dl) × 3/2 + H(Dr) × 5/2.
By Lemma 6 and the algorithms in Secs 4.2 and 4.3, we

have H(Dl) ≤ 4nl and H(Dr) ≤ 4nr and hence W (Dc) ≤
6nc+6+6nl+10nr. Since nl+nr+nc = n+4 and nc ≥ 10,
we have W (Dc) ≤ 10(nl + nr + nc) + 6− 4nl − 4nc ≤ 10n.
Furthermore, one can prove similarly above, H(Dc) ≤ 5n.

We thus have the following lemma.

Lemma 7 For a plane graph Gc having a canonical de-
composition Π = (U1, U2, · · · , Um) with respect to v1, v2
and vn, the heptagonal drawing algorithm yields a convex
grid drawing of Gc on a W × H grid with W ≤ 10n and
H ≤ 5n in linear time.

4.5 Drawing of G

We first arrange Dc so that x(ai+4) = 0 and y(ai+4) = 0.
We then arrangeDl so that the edge (ul1 , ul2) ofDl overlap
the same one of Dc. We also arrange Dr so that the edge
(ur1 , ur2) of Dr overlap the same one of Dc. We finally
remove the edges (ul1 , ul2) and (ur1 , ur2) if they are not
original edges of G, as illustrated in Fig. 2(b).

4.6 Validity of Drawing Algorithm

In this section, we show that the drawingD obtained above
is a convex grid drawing of G. By Lemma 6, three drawings
Dl,Dr and Dc are convex grid drawings. Therefore, one
can easily show that D is a convex grid drawing of G with
pentagonal contour. Clearly, the size of the grid of the
drawing D of G is equal to the size of Dc of Gc and hence,
by Lemma 7, we have W (D) ≤ 10n and H(D) ≤ 5n.

We thus have the following theorem.

Theorem 1 Assume that G is an internally triconnected
plane graph, every vertex of G has degree three or more,
and the triconnected component decomposition tree T (G)
has exactly five leaves. Then our algorithm finds a convex
grid drawing of G with a pentagonal outer polygon on a
10n× 5n grid in linear time.

5 Conclusions

In this paper, we showed that every internally triconnected
plane graph G whose decomposition tree T (G) has exactly
five leaves has a convex grid drawing on a 10n×5n grid, and
we present a linear-time algorithm to find such a drawing.
The area bound O(n2) is optimal up to a constant factor
since a plane graph of nested triangles needs an Ω(n2) area.
The remaining problem is to obtain an algorithm for an
internally triconnected plane graph whose decomposition
tree has six or more leaves.
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