CM-005

車載スモールセル基地局における歩車間通信特性 Vehicle-to-Pedestrian Connectivity on Vehicle-Mounted Small Cell Access Point

丸田一輝1	中山 悠 ²	本田一暁2	久野 大介 ³	安昌俊1	
Kazuki Maruta	Yu Nakayama	Kazuaki Honda	Daisuke Hisano	Chang-Jun Ahn	

1. はじめに

増大するモバイルトラフィックを限られた周波数資源下 で効率的に収容する手段として基地局のスモールセル化が 有効である[1][2].一方,モバイルトラフィックは時間的 に変動することから高トラフィック領域のみに着目したス モールセル基地局(Small cell access point, SCAP)の展開は設 備効率の観点から改善の余地がある.

電力消費の観点からは、トラフィック需要に応じて SCAP の機能をオン/オフすることにより最適化を図る手法 が検討されている[3]. 設置コストの観点からは、SCAP そ のものがトラフィック分布ないしは時間変動に追従するよ うに移動するアプローチも検討されている[4]. しかしこの 場合,移動する SCAP とネットワークを接続する際に無線 バックホールが必要となることから回線容量の不足が懸念 される.

そこで著者等は基地局機能を各種移動体に搭載しながら もバックホールとは有線回線で接続されるシステムコンセ プトとして Autonomous base station with optical reflex backhaul (ABSORB)を提案した[5]. これにより,固定設置 型のスモールセル展開と比較してトラフィックへの追従性 を維持しながらも所要の SCAP 数を削減可能であることを 示している.その具体的な適用例として SCAP 機能を鉄道 車両に搭載し,車両内のユーザ端末(User equipment, UE)に 対し通信手段を提供する形態が考えられ,運行ダイヤを考 慮した SCAP の配置スケジューリングと併せて有効性を示 した[6].

また新たな SCAP の展開形態として自動車を対象とし、 報酬に対するドライバーの行動特性に基づく基地局機能の 制御(オン/オフ)手法に関するコンセプトを提案した[7]. こ れは自律移動型と有効化機能制御型のハイブリッド方式と も言える.本検討ではこれらシステム形態を,自律的にト ラフィックに追従可能な適応的モバイルネットワークと総 称する. 車載型 SCAP(Vehicle-mounted SCAP, VAP)のシス テム形態においては、VAP に接続を試みる UE は主に歩道 に存在することが考えられる一方で、車両は常に高速移動 する環境にある. このとき, 車両は UE の付近を短時間で 通過することから、歩車間の通信特性を明確にする必要が ある.本稿では、VAP によるシステム構成及び通信方式に ついて議論・考察するとともに、初期検討として直線型道 路環境における歩車(UE-VAP)間の無線アクセスに着目し, その通信性能について計算機シミュレーションを通して明 らかにする.

1千葉大学大学院工学研究院,

Graduate School of Engineering, Osaka University

2. システムモデル

2.1 システム構成

システム構成を図1に示す。基地局は機能が分割された 集中型無線アクセスネットワーク(Centralized radio access network, C-RAN)を前提とし、中央制御ユニット(CU)、分散 ユニット(DU), VAP の機能を有するアンテナユニット (RU)から構成されるものとする[8]. CU-DU 間は光回線に て接続される.スモールセルを形成する RU は車両を含め 多数展開され得ることから,DU-RU 間を無線モバイルフ ロントホール(Mobile fronthaul, MFH)にて構築することで柔 軟なスモールセル展開が可能となる[9]. 無線 MFH として は周波数資源が潤沢な高周波数帯及び超多素子アレーアン テナを用いる手法が有効と考えられる[10][11]. アレーア ンテナを用いたビーム形成により周波数に比例して大きく なる伝搬損失を補償し、かつ他局への与干渉を低減可能で あることから周波数の空間的な再利用性も高まる.本検討 では無線フロントホール区間は十分な通信容量であること と DU が VAP への正確なビーム追従機能を有することを 前提とし, RU(VAP)-UE 間の無線アクセスを評価の対象と する.

2.2 伝搬路モデル

通信環境として、図1に示すような都市部における高層 建造物に挟まれた半閉鎖空間(ストリートキャニオン)を想 定し、伝搬路を鏡像法によるレイトレース法[12]に基づき 生成する.大地反射及び左右壁面の反射を最大10回まで 考慮し VAP-UE の下りリンク受信レベル変動を取得する. UE は壁面から $x_u = 2.0 \text{ m離れ}$ ており、観測対象とする道路 500m の中間に位置するものとする.片側2 車線道路を模 擬し、車道幅 $w_v = 3.0 \text{ m}$ 、歩道幅 $w_p = 5.0 \text{ m}$ とする.この ような道路モデルにて取得される伝搬路の遅延プロファイ

Graduate School of Engineering, Chiba University

² neko 9 Laboratories

³大阪大学大学院工学研究科,

ルの一例を図 2 に示す. 有意なレベルを有する反射波の最 大遅延時間は 500 ns 程度であることがわかる.

2.3 交通量モデル

通信可能エリア及び通信性能は車両密度やその移動速度 に依存すると考えられる.車両の速度 v(km/h)と車線当た りの車両密度(交通量) d (veh/km/lane)は以下のような対応関 係がモデル化されており[13],本検討では実測に基づく下 記指数関数モデルを採用する[14].

$$v = 93.35e^{-0.017d} \tag{1}$$

上式の対応関係を図3に示す.本モデルは、車両が高速移 動する場合には車間距離を長く設ける必要があることから 交通量は低下することを示している.車両速度が大きい場 合,通信エリアないしは受信レベルの低下に加え、伝搬路 の時間変動が大きくなることから通信品質の劣化も懸念さ れる.

3. 車載スモールセル環境における歩車間通信方式

これまで、歩車間通信における検討では歩者と車両の衝 突事故回避を主な目的としていた.本検討では、ユーザの ネットワークへの新たなアクセス手段としての歩車間通信 を考える.ここで、広帯域による大容量化を想定し高周波 数帯を用いることを前提とする.この場合、伝搬損失が大 きくなることから各 VAP のセル領域は狭まる.

3.1 無線フロントホール構成による VAP 協調

無線による MFH を用いる場合, DU-VAP 間の接続リン クを柔軟に構築することが可能であり,スモールセルの柔 軟な展開を可能とする.本システムにおいては, VAP が常 に一定の速度で,歩道に位置する UE 付近を移動すること から接続可能時間は短く,データ通信を継続的に行うのは 困難な環境であることが考えられる.加えて,スモールセ ル当たりの通信可能領域も車両密度に依存する.

車両密度の低下に伴う通信品質劣化の補償として,複数 の VAP による多地点協調 (Coordinated multipoint, CoMP) [15] 伝送を適用したカバー領域の拡張が可能である.複数 の VAP から選択(Dynamic point selection, DPS)ないしは連携 して UE へ同一の信号を送信(Joint transmission, JT)すること

で仮想的にセル領域を拡大し受信レベルを向上する.これ によりセルエッジ領域の解消に加えて単独セルの場合と比 べて所望信号電力レベルを向上し,接続性を改善できると 考えられる.

3.2 MIMO の適用

上記 CoMP 伝送において, それぞれの VAP を経由する 送信信号に異なる情報を割り当て, 複数のアンテナを有す る UE でそれらを分離する空間多重伝送法である Multipleinput multiple-output (MIMO)の適用も可能である. 路側機と 車両間の通信環境における MIMO の適用可能性が[16]で示 されている.これにより,通信容量のさらなる向上が可能 であり,本稿では歩車間通信環境における MIMO の適用可 能性を検討する.

4. 特性評価

4.1 シミュレーション条件

シミュレーションパラメータを表 1 に示す. 目前の低 SHF における周波数資源の枯渇及び大容量化への要求を鑑 み,広帯域を確保可能である 28GHz 帯を想定し, VAP が

Parameters	Values	
Carrier frequency	28 GHz	
Bandwidth	100 MHz	
Number of VAP / UE antennas	1 / 2	
Height of VAP / UE antenna	2.0 / 1.2 m	
VAP / UE antenna gain	0 dBi	
VAP Transmission power	20 dBm	
Feeder loss	3 dB	
Receiver noise density	-174 dBm/Hz	
Noise figure	9 dB	
Max reflection number	10	
Street width	22 m	

表1 シミュレーションパラメータ

スモールセルを形成する. 2.2 節に述べたように, 評価対象を直線道路 500mの区間, UE 側の1車線のみとし, その 中間地点に 1UE が歩道に位置するものとし, 当該 UE の下 りリンクにおける通信特性を評価する. その指標として本 評価では受信時の信号対雑音電力比(Signal-to-noise power ratio, SNR)を用いる. VAP のアンテナは1本, UE は2本, いずれも無指向性とし UE においては選択ダイバーシチ受 信[17]を行うものとする. MFH を含む上位の区間は理想的 にリンクが構築されているものとする. また, CoMP にお いて JT を実施する際の伝搬路情報(Channel state information, CSI)の推定は理想的に行わるものとし, 受信機雑音及び伝 搬路変動に起因する推定誤差は無いものとする. また隣接 する VAP からのセル間干渉も考慮しない.

4.2 シミュレーション結果

まず時刻に対する SNR の変動を図 4 に示す. このとき 60km/h である. 所要の受信 SNR を 10 dB とすると, 単一 セルのレベル変動に着目した場合, 通信可能時間は 3 秒程

度であることがわかる. 受信レベルに応じて理想的に DPS による接続 VAP の切替 が可能であれば,ほぼ常に 15 dB 以上の SNR を確保可能となり,60 km/h においても一定の 通信品質を確保可能であることが期待できる.

次に、車両速度/交通量に対する受信 SNR の累積確率分 布(Cumulative distribution function, CDF)特性を図5に示す. ここで、車両は等間隔に等速で走行するものとし、1 ms 間 隔で10秒間観測した受信 SNR から分布を取得している. また DPS 及び JT 適用時における受信特性をそれぞれプロ ットしている. DPS は受信レベルの最も大きい VAP を動 的に選択し、JT は同様に受信レベルの大きい VAP 2 局か ら、UE にて同位相となるようにウェイトを与え送信を行 うものとする.時速に伴い車両密度は低下するため、受信 SNR の分布は低下する傾向にあるが、60 km/h において単 ーセルにおいて 15 dB 以上の通信品質が 98.2%確保される. JT 適用時には、安定した受信電力の改善が確認でき、 CDF=5%において 4.3 dB の改善が得られる.

CoMP-JT の適用効果について,協調する VAP 数(N_{VAP})に 対する CDF 特性を図 6 に示す. v = 60 km/h である. VAP 数の増加に伴い受信 SNR は向上する. ここでは受信レベルの高い順に協調する VAP を選択していることから,協調対象の VAP はより遠方となるため,JT の効果は徐々に飽和する傾向が見られる. $N_{VAP} = 6$ の場合,最遠の VAP はおよそ 120 m 程度となるが,同位相合成による受信利得の向上に寄与する.

CoMP-JT によるプリコーディングが可能である前提のも と、固有モード伝送による 2×2 MIMO 適用時の各ストリ ームの SNR 特性を評価する.図7に、車両速度 60km/h に おける協調 VAP 数に対する各ストリームの受信 SNR の CDF = 5%値を示す.第1固有モードは安定して20 dB 程度 の高い利得が得られることが確認できる.一方、第2 固有 モードは協調 VAP 数が2 の場合には利得が小さく、当該 ストリームの寄与は小さいが、協調 VAP 数を3 以上とす れば10 dB 以上の有意な値となり、MIMO 適用の有効性が 確認できる.ただし、伝搬路の時変動が MIMOの通信特性 に大きな影響を及ぼすため、詳細な評価が必要である.

4.3 検討課題

変調方式として直交周波数分割多重(Orthogonal frequency division multiplexing, OFDM)が広く用いられている. これを 前提としたとき,高速移動環境におけるドップラーシフト への耐性等,本システム環境への適用性の観点からサブキ ャリア間隔やガードインターバル長など各パラメータの最 適化が必要である. 5G New radio (NR) [18]においてはそれ らの拡張されたパラメータが新規に定義されている. 加え て,伝搬路の時間変動に起因する CSI の推定誤差により生 じる JT 及び MIMO の性能劣化も無視できない. 詳細なリ ンクレベルシミュレーション等を通して定量的な評価なら びに特性改善の検討を進める.

また、DU-RU(VAP)の無線 MFH 区間においても、VAP はほぼ常時移動していることから超多素子アレーアンテナ によるビームの追従性等を詳細に検討する必要がある.こ こで、VAP の移動は一方向規則性を持つことに着目した制 御手法等が考えられる.その他、複数 UE 存在下における セル間干渉の影響評価並びにその回避手法も検討すべき課 題として挙げられる.最終的には、本検討で導入した交通 量モデルに加え、ビークルセルコンセプト[7]におけるドラ イバーの行動特性による SCAP の有効化率を考慮した総合 的な接続率の評価により本提案システムの実現可能性を明 らかにする.

5. まとめ

車載スモールセル型適応的モバイルネットワークについ て、歩車間通信の基本特性を明らかにした.複数の車載 RUによる CoMP 伝送の観点からセル拡張の有効性、およ び MIMO の適用性をシミュレーションにより示した.

謝辞

本研究の一部は, JSPS 科研費 17H06562 及び KDDI 財団 の助成を受けて行われた.

参考文献

- X. Gelabert, P. Legg, and C. Qvarfordt, "Small cell densification requirements in high capacity future cellular networks," in *International Conference on Communications Workshops (ICC)*. IEEE, June 2013, pp. 1112–1116.
- [2] M. F. Feteiha, M. H. Qutqut, and H. S. Hassanein, "Outage probability analysis of mobile small cells over LTE-A networks," in *International Wireless Communications and Mobile Computing Conference (IWCMC)*. IEEE, 2014, pp. 1045–1050.
- [3] G. K. Tran, H. Shimodaira, K. Sakaguchi, "User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network," *IEICE Trans. Commun.*, Vol. E100-B, No. 4, Aug. 2018. [Advance publication]
- [4] S. Oka, T. Murakami, Y. Takatori, M. Mizoguchi and F. Maehara, "Performance of adaptive movable access point system in the presence of positioning error," 2017 *IEEE Radio and Wireless Symposium (RWS)*, Phoenix, AZ, 2017, pp. 150-152.
- [5] Y. Nakayama, T. Tsutsumi, K. Maruta, K. Sezaki, "ABSORB: Autonomous Base Station with Optical Reflex Backhaul to Adapt to Fluctuating Demand," in *IEEE International Conference on Computer Communications (INFOCOM 2017)*, Atlanta, GA, pp.235-243, May 2017.
- [6] Y. Nakayama, K. Maruta, T. Tsutsumi, K. Sezaki, "Optically Backhauled Moving Network for Local Trains: Architecture and Scheduling," *IEEE Access*.
- [7]本田一暁,安永遼真,中山悠,丸田一輝,堤卓也,"ビークルセル: ドライバーの意思決定に基づく動的なモバイルネットワーク," 情報処理学会全国大会, 3D-05, 2018年3月.
- [8] P. Chanclou, L. A. Neto, K. Grzybowski, Z. Tayq, F. Saliou, and N. Genay, "Mobile fronthaul architecture and technologies: A RAN equipment assessment," *J. Opt. Commun. Netw.*, vol. 10, no. 1, pp. A1–A7, Jan 2018.
- [9] X. Liu and F. Effenberger, "Evolution of mobile fronthaul towards 5G wireless and its impact on time-sensitive optical networking," 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2017, pp. 1-2.
- [10] M. Selim, A. E. Kamal, K. Elsayed, H. M. Abdel-Atty and M. Alnuem, "Fronthaul cell outage compensation for 5G networks," *IEEE Communications Magazine*, vol. 54, no. 8, pp. 169-175, Aug. 2016.
- [11]K. Senel, E. Bjoernson and E. G. Larsson, "Optimal Base Station Design with Limited Fronthaul: Massive Bandwidth or Massive MIMO?," 2017 IEEE Globecom Workshops, Singapore, 2017.
- [12] A. Goldsmith, "Wirelles Communications," Cambridge University Press, 2005.
- [13]D. L. Gerlough, M. J. Huber, "Traffic flow theory : a monograph," Transportation Research Board, National Research Council, Washington, 1975.
- [14] A.-S. A. Al-Sobky and R. M. Mousa, "Traffic density determination and its applications using smartphone," *Alexandria Engineering Journal*, vol. 55, no. 1, pp. 513–523, 2016.
- [15] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa and M. Tanno, "Coordinated multipoint transmission/reception techniques for LTE-advanced," *IEEE Wireless Communications*, vol. 17, no. 3, pp. 26-34, June 2010.
- [16] 定道英惠, 伊藤清繁, 中岡謙, 岡村由美, 中尾正悟, "路車間 MIMO 通信におけるレイトレース法を利用した性能評価方法の一検 討,"信学技報, vol. 107, no. 38, RCS2007-4, pp. 19-24, 2007 年 5 月.
- [17]E. A. Neasmith and N. C. Beaulieu, "New results on selection diversity," *IEEE Transactions on Communications*, vol. 46, no. 5, pp. 695-704, May 1998.
- [18] 3GPP, TS 38.211, v15.1.0, "NR; Physical channels and modulation (Release 15)," Mar. 2018.