B-001

統合陸域モデル ILS と大気モデルの結合

On the coupling of integrated land simulator ILS and the atmospheric model

荒川隆† 新田友子≠ 鳩野美佐子 b 竹島滉 § 芳村圭‡

Takashi Arakawa Tomoko Nitta Misako Hatono Akira Takeshima Kei Yoshimura

1. はじめに

気象・気候現象は、大気に限らず海洋や植生、土 壌、河川など多様な要素が相互作用する複雑なプロ セスである。特に陸域は、大気の下部境界であると 同時に人間を含めた様々な生物の生息圏であること から、自然や社会に直接的な影響を及ぼす。従って、 陸域のシミュレーションは、気象気候の再現や予測 のみならず気候変動に対する影響評価や適応策の 策定など、人間社会に直接影響するきわめて重要な 役割をもっている。にもかかわらず、従来の気象・気 候モデルにおける陸域モデルの位置づけは物理的 には大気モデルの下部境界条件であり、プログラム としては大気モデルコードの一部として時間積分ル ープの中で実行されるもの、というレベルにとどまっ ていた。しかし近年、モデルの精緻化ハードウェアの 高性能化に伴って、陸域モデルコードも肥大化複雑 化の一途をたどっており、大気モデルコードの一部 分という従来の形態では、管理・開発に支障を来す ようになってきた。そこで現在、陸域モデルを大気モ デルから分離し独立したプログラムとしたうえで結合 プログラム(カプラ)を介して結合するシステムの構 築が行われている。このシステムを ILS(Integrated Land Simulator)と呼ぶ。昨年度の FIT2017 では ILS の構成と計算性能について報告したが(1)、本大会で は ILS の具体的な適用事例として大気モデルとの結 合について報告する。

陸面と河川の計算が行われる。なお MIROC AGCM に組み込まれている MATSIRO は計算内容としては ILS の MATSIRO とほぼ同等のものである(コードは ILS に移植する際全面的に書き換えられた)。陸面と 大気の物理量の交換は大気モデルのサブルーチン LNDFLX で行われる。ILS との結合では、LNDFLX に 結合サブルーチンを挿入し、ILS の計算結果を大気 に与える/大気の計算結果を ILS に与えるようにし た。

3. 結合の詳細

3.1 MATSIROの格子系

MATSIRO は大気モデルの下部境界として開発さ れたという経緯から、従来の計算で用いられている 格子系は MIROC AGCM の格子系に準拠したものと なっていた。具体的には MIROC AGCM の矩形格子 を等分割したモザイク格子と呼ばれる格子系である。 大気の力学的・物理的プロセスは陸面や海面に強く は拘束されないため、格子は任意の形状を取ること ができ、緯度経度に沿った矩形格子が一般的に用い られてきた。一方、陸面の諸過程は地形や土地利用 形態に強く影響されるため、それらを無視した矩形 格子は陸域モデルの格子系としては適切ではなく、 より忠実に陸面の状況を反映した格子系を用いるこ とが望ましい。そこで、ILS では標高データに基づい た不定形の格子系を採用した。ILS の格子と大気格 子の形状を図2に示す。点線で表された4角形の格 子は大気モデルの格子を、実線で表された不規則な

2. ILS の構成と大気モデル結合

ILS の構成と大気モデルとの結合 の模式図を図1に示す。ILS は陸面 モデル MATSIRO⁽²⁾. 河川モデル CaMa-Flood⁽³⁾、IO コンポーネントの 3つのサブモデルで構成されている。 これらのコンポーネント間および外 部モデルとの結合はカプラ Jcup が 担当する。結合対象となっている大 気モデルは気候モデル MIROC の大 気部分で通称 MIROC AGCM と呼ば れる。MIROC AGCM は同一プログラ ムに陸面モデル(MATSIRO)と河川モ デル(TRIP)を持っており、従来の方 法では図1の LNDSTP と RIVSTP で + 高度情報科学技術研究機構 § 東京大学大学院工学系研究科 ▶ 東北大学大学院工学研究科 + 東京大学生産技術研究所

図1 ILS の構成と大気モデル結合

形状の格子は ILS の MATSIRO と CaMa の格子を 表す。図で陸地でありながら ILS の格子がないエリ アが存在するが、これは海陸分布の基準となってい る海洋モデルで海と判定されたエリアである。一方グ レーでハッチされたエリアは、海洋モデルが陸と判定 したにもかかわらず地形情報がない(実際には海の) エリアである。

図2 ILSと大気モデルの格子形状

3.2 データ交換の詳細

送受信されるデータの数と時間間隔は表1に示す とおりである。AGCM から MATSIRO に渡されるデー タは短波放射、長波放射、降雨降雪、気温や水蒸気 量など12 種類、MATSIRO から AGCM データは、ア ルベドや地表面気温など 14 種類である。MATSIRO と AGCM のデータ交換間隔は4分である。本来、 MIROC AGCM の物理過程はその時刻の大気の状態(主に風速)に応じてΔT が変化するようになって いるが、ILS との結合に際してはΔT=240 秒で固定 している。MATSIRO から CaMa へは土壌から河川 へ流入する水の量が渡される。一方、CaMa から MATSIRO へは今のところデータは渡されない。 CaMa からの出力データは河口からの水の流出など 12 種類である。CaMa のデータ交換間隔は1日毎に なっている。

表1	送受	(言デ・	<u>— なの</u>)数と	·間隔
1. 1			~~/	' %X L	

送信	受信	データ数	間隔(秒)	
AGCM	MATSIRO	12	240	
MATSIRO	AGCM	14	240	
MATSIRO	IO	45	240	
MATSIRO	CaMa	1	86400	
CaMa	IO	12	86400	

4. 計算結果と性能評価

MIROC AGCM とILS の結合計算事例として6ヶ月 積分後の地上気温を図3に示す。上段は観測値、下 段は計算値である。細部に差違はあるものの、両者 はよく一致しており妥当な計算が行われたと判断さ れる。この計算は京コンピュータで実施した。使用リ ソースは MIROC AGCM: 64node, MATSIRO: 16node, IO: 1node である。6ヶ月積分の実行時間は 19 時間 46 分であった。MIROC AGCM 単体での実行時間は およそ 5 時間だったので4倍の時間を要したことにな る。これは ILS 単体の実行時間から想定される値に 比べても悪い。発表では結合やパフォーマンス測定 について詳細を報告する。

図3 ILSと大気モデルの結合計算結果

(1) 荒川隆、新田友子、鳩野美佐子、芳村圭:陸域統合 モデル ILS とその結合について、第 16 回情報科学技 術フォーラム、東京大学、2017 年 9 月 14 日

(2)Takata, K., S. Emori, and T. Watanabe: Development of minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209–222, doi: 10.1016/S0921-8181(03)00030-4.

(3)鳩野美佐子、芳村圭、荒川隆、山崎大、沖大幹:高 解像度河川氾濫過程の導入が大気大循環モデルの推 計値に及ぼす影響、土木学会論文集 B1(水工学)、 72(4)、I_115-I_120,2016