
NTCIREVAL: A Generic Toolkit for Information Access Evaluation
Tetsuya Sakai†

1. Introduction
Over the past decades, Information Access (IA) tasks

have evolved and diversified. For example, in the mid-
20th century, Information Retrieval (IR) was about
set retrieval for libraries; then with the advent of the
digital information overload era, ranked retrieval be-
came a necessity; now in the 21st century, we are ex-
periencing richer forms of IR such as diversified Web
search in order to satisfy ambiguous and underspeci-
fied queries [25]. Moreover, with the progress in nat-
ural language processing, automatic Question Answer-
ing (QA) [10, 15, 20] and leveraging Community QA
(CQA) data [24] have become feasible. Many of these
IA tasks involve automatic ranking of items (e.g. doc-
uments or answer strings).
To ensure progress in IA research, reliable evaluation

metrics are an absolute necessity. Given an IA task
definition, an evaluation metric should be designed so
that it can guide the system towards the right goal of
that particular task. Hence, together with IA tasks, IA
evaluation methods and metrics have also evolved and
diversified.
This paper introduces a tookit for evaluating a va-

riety of IA tasks, called NTCIREVAL, designed pri-
marily for tasks that involve ranking of items. NT-
CIREVAL is available at http://research.nii.ac.
jp/ntcir/tools/ntcireval-en.html. (This paper
discusses the version released in April 2011.) It works
on UNIX/Linux platforms. While NTCIREVAL can
handle some of the ongoing and past IA tasks of NT-
CIR, the sesquiannual IA evaluation workshop run by
National Institute of Informatics, it is a generic toolkit
that can be used for other IA tasks. The main objec-
tive of this paper is to provide an overview of the phi-
losophy behind and functionalities of NTCIREVAL, so
that IA researchers can quickly understand and utilise
it whenever appropriate. Because IA research relies
much on experimentation, sharing such an evaluation
toolkit among the IA researchers should help enhance
the reproducibility of experiments, and also foster dis-
cussions on how to better evaluate IA tasks. This paper
should also serve as a noncomprehensive survey of re-
cent developments in the field of IA evaluation metrics.
The remainder of this paper is organised as fol-

lows. Section 2 discusses the design philosophy of NT-
CIREVAL. Section 3 explains how NTCIREVAL can
be used for traditional ranked retrieval evaluation and
its extensions. Section 4 explains how it can be used for
diversified search evaluation. Finally, Section 5 sum-
marises this paper and provides some general recom-
mendations for IA researchers.

2. Design Philosophy
2.1 Overview

NTCIREVAL consists of a simple C program called
ntcir eval and some shell scripts. ntcir eval has
been designed to work for a single topic (i.e. search
request): it basically compares a system output with a
gold standard (i.e. “right answers”) for that particu-
lar topic. It has several subcommands for different IA

†Microsoft Research Asia tetsuyasakai@acm.org

tasks, some of which are shown in Table 1. As this pa-
per is designed to introduce only the general principles
of NTCIREVAL, we refer the reader to the README
files for details on the arguments and options that can
be used with ntcir eval and with the shell scripts.
Compared to trec eval‡, a C program that has been

widely used at the Text Retrieval Conference (TREC)
and other IR evaluation workshops for over a decade
(with numerous updates), NTCIREVAL has several
characteristics. For the purpose of discussing these
characteristics in Sections 2.2-2.4, Figure 1 shows a
very simple example of how ntcir eval can be used
on a command line:

% cat example.rel
a L1
b L0
% cat example.res
c
b
a
% cat example.res | ntcir_eval label -r example.rel
c
b L0
a L1
% cat example.res | ntcir_eval label -r example.rel |
ntcir_eval compute -r example.rel -g 1:2
syslen=3 jrel=1 jnonrel=1
r1=3 rp=3
RR= 0.3333
O-measure= 0.5000
P-measure= 0.5000
P-plus= 0.5000
AP= 0.3333
Q-measure= 0.5000
NCUgu,P= 0.3333
NCUgu,BR= 0.5000
NCUrb,P= 0.3333
NCUrb,BR= 0.5000
RBP= 0.0226
ERR= 0.1111
AP@1000= 0.3333
Q@1000= 0.5000
nDCG@1000= 0.6309
MSnDCG@1000= 0.5000
P@1000= 0.0010
nERR@1000= 0.3333
Hit@1000= 1.0000

Figure 1: An example usage of ntcir eval.

Here, example.rel is a relevance assessment file and
example.res is a system’s ranked list for a particular
topic. a, b and c represent retrieved items (e.g. doc-
ument IDs), and L0 and L1 are relevance labels. L0
represents an item that was explicitly judged to be non-
relevant, while L1 represents an item that was judged
to be relevant with a relevance level of 1. The rest
of the information shown in Figure 1 will be discussed
later.

2.2 Per-topic Execution
IA evaluation often relies on a test collection with

a set of topics with relevance assessments. Thus, at
TREC, for example, a program (like trec eval) typi-
cally reads a qrels file (a single file containing the rele-
vance assessments for all topics) and a run file (a single
file containing the ranked list of documents for all top-
ics), and output evaluation metrics for each topic as
well as summary statistics such as the mean of each
metric over the topic set.
In contrast, as Figure 1 shows, ntcir eval works

only for a single topic: it reads a gold standard file,
reads a system output and then computes metrics for a

‡http://trec.nist.gov/trec_eval/

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 23

RD-004

(第2分冊)

Table 1: ntcir eval subcommands.
Section 3. label adds relevance labels to a ranked list
(traditional ranked retrieval) compute computes evaluation metrics for an output from label
Section 4. glabel adds global gain values to a ranked list
(diversified search) gcompute computes evaluation metrics for an output from glabel

irec computes intent recall for a ranked list

particular topic. The shell scripts take care of running
ntcir eval for every topic, computing means, and so
on. This reflects the view that what is happening per
topic is central to IA evaluation. Moreover, this design
allows researchers to flexibly use different evaluation
settings for different topics, as illustrated below.
Let us go back to the last command in Figure 1. This

command first uses the label subcommand to add rele-
vance labels to the system’s ranked list, and then feeds
the output to the compute subcommand to compute
evaluation metrics. The compute subcommand spec-
ifies a relevance assessment file by a -r option, and
also specifies the gain values [9] for computing graded
relevance metrics by a -g option. Here, -g serves the
following two purposes: (1) declare that the highest
relevance level is 2 (by specifying two values separated
by a colon); and (2) set the gain value for L1 to be
1 and that for L2 to be 2. If the NTCIREVAL user
wants to use exactly the same options for every topic,
he can hard-code them within a shell script that runs
ntcir eval for every topic. (A sample script is in-
cluded in NTCIREVAL.) Alternatively, if he wants to
set the options per topic, he can write a shell script
for that purpose. For example, he may choose to write
a script that first examines the highest relevance label
within the rel file (which in the case of example.rel
is L1), and then dynamically set the -g option accord-
ingly (e.g. -g 1 for some topics and -g 1:2 for other
topics). Dynamically changing the highest relevance
level h(≥ 1) across topics will affect metrics that di-
rectly relies on h, such as Expected Reciprocal Rank [6]
and Rank-Biased Precision [11]: Section 3.1 discusses
these metrics.
NTCIREVAL also contains some scripts for splitting

“TREC-style” qrels files and run files into per-topic
files§. Thus, with NTCIREVAL, a directory is created
for every topic, and all per-topic gold standards, system
outputs and intermediate results are stored under each
topic directory. This facilitates per-topic failure analy-
sis, which is vital for advancing the state-of-the-art of
IA technologies.
Furthermore, while NTCIREVAL contains some

scripts for computing arithmetic means of per-topic
metric values output by ntcir eval, note that the
arithmetic mean is not the only possible way to sum-
marise a system’s performance. For example, one
can easily write a shell script that computes geomet-
ric means in order to pay more attention to “hard”
topics (i.e. those for which the system performs
poorly) [12, 16]. This is another benefit of separating
the computation of per-topic performances from that
of overall summary statistics.

§The scripts for splitting the run files take the original rank-
ings in the run files “as is,” not allowing any weak ordering. Thus
it is the system’s responsibility to break ties. This is in contrast
to trec eval which, for historical reasons, reranks documentIDs
internally based on the scores given within the run files.

2.3 Labelling/Computation Separation

The C program ntcir eval itself has a few unique
features. One of them is related to the aforementioned
per-topic analysis of experimental results. It can be
observed in Figure 1 that ntcir eval isolates the pro-
cess of labelling the system output from that of metrics
computation, by means of the two subcommands label
and compute. Here, labelling refers to the process of de-
termining which items in the system output should be
considered relevant.
Figure 1 includes a very simple example of labelling:

ntcir eval compares the res (system’s result) file
with the rel (relevance assessment) file, and adds ap-
propriate relevance labels to the system output. The
first advantage of isolating the labelling process from
metrics computation is that it helps the NTCIREVAL
user manually examine the quality of each system out-
put: he can easily see which item is relevant, as well
as how relevant. But there are more advantages, as
discussed below.
Figure 2 shows what happens when the -j

(“judged”) option is used with the label subcom-
mand. In IR evaluation based on pooling where rel-
evance assessments are performed only for items that
have been retrieved by at least one participating sys-
tem [13], items can be categorised into the following
three classes: (i) judged relevant items (i.e. items in-
cluded in the pool and judged to be relevant); (ii)
judged nonrelevant items (i.e. items included in the
pool and judged to be nonrelevant, represented as L0);
and (iii) unjudged items (i.e. items that were not in
the pool and therefore we do not know whether they
are relevant or not). It can be observed that, while all
three items are output by the label command in Fig-
ure 1, the unjudged item c is not output by the label
command in Figure 2, because of the -j option. A
ranked list whose unjudged documents have been re-
moved in this way is called a condensed list. It has
been shown that if IR metrics are computed based on
a condensed list instead of the original ranked list, they
can provide more reliable results when the relevance as-
sessments are incomplete (i.e. there are many relevant
documents that have not been identified) [4, 19, 21].
Thus, the metrics shown in Figure 2 are condensed-list
versions of the original metrics. We shall discuss them
again in Section 3.2.
Figure 3 shows another example of utilising the fact

that ntcir eval isolates labelling from metrics com-
putation. Here, instead of example.rel which we used
in Figure 1, a slightly modified gold-standard file called
example.erel is used. This file has a third field, which
represents the ID of an equivalence class to which each
item belongs. Note that a -ec option is used with
both label and compute in order to declare that the
erel file contains equivalence class information. Eval-
uation based on equivalence classes is useful, for ex-
ample, for evaluating ranked lists of answer strings in
factoid QA [15, 20]. For example, in response to a
question: “Who wrote songs for The Beatles with John

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 24

(第2分冊)

% cat example.res | ntcir_eval label -j -r example.rel
b L0
a L1
% cat example.res | ntcir_eval label -j -r example.rel |
ntcir_eval compute -r example.rel -g 1:2
syslen=2 jrel=1 jnonrel=1
r1=2 rp=2
RR= 0.5000
O-measure= 0.6667
P-measure= 0.6667
P-plus= 0.6667
AP= 0.5000
Q-measure= 0.6667
NCUgu,P= 0.5000
NCUgu,BR= 0.6667
NCUrb,P= 0.5000
NCUrb,BR= 0.6667
RBP= 0.0238
ERR= 0.1667
AP@1000= 0.5000
Q@1000= 0.6667
nDCG@1000= 1.0000
MSnDCG@1000= 0.6309
P@1000= 0.0010
nERR@1000= 0.5000
Hit@1000= 1.0000

Figure 2: Using ntcir eval label with -j.

Lennon?” suppose that a system returned “Paul Mc-
Cartney” at rank 2 and “McCartney” at rank 3, and
that these two answer strings form an equivalence class
(i.e. they are interchangeable). Then, EC-based eval-
uation can penalise this redundancy by treating the
correct answer at rank 3 as if it is nonrelevant. The
elabel command in Figure 3 does exactly this: al-
though a in example.res is a correct item according
to example.erel, it is not marked as relevant because
a correct answer from the same equivalence class has
already been found at rank 2, namely, b.

% cat example.erel
a L1 1
b L2 1
% cat example.res | ntcir_eval label -ec -r example.erel
c
b L2 1
a
% cat example.res | ntcir_eval label -ec -r example.erel |
ntcir_eval compute -ec -r example.erel -g 1:2
syslen=3 jrel=1 jnonrel=0
r1=2 rp=2
RR= 0.5000
O-measure= 0.7500
P-measure= 0.7500
P-plus= 0.7500
AP= 0.5000
Q-measure= 0.7500
NCUgu,P= 0.5000
NCUgu,BR= 0.7500
NCUrb,P= 0.5000
NCUrb,BR= 0.7500
RBP= 0.0475
ERR= 0.3333
AP@1000= 0.5000
Q@1000= 0.7500
nDCG@1000= 1.0000
MSnDCG@1000= 0.6309
P@1000= 0.0010
nERR@1000= 0.5000
Hit@1000= 1.0000

Figure 3: Using ntcir eval label and compute with
-ec.

In Figure 3, the compute subcommand with -ec
takes the result of label (also with -ec) and then com-
putes IR metrics just as in Figure 1. The only difference
here is that now the total number of equivalence classes
is taken as the number of relevant items. Section 3.3
will discuss more on these equivalence-class versions of
the original metrics.
Because of this separation between labelling and

metrics computation, other labelling strategies can
easily be implemented if required. For example, as
Sakai [18] suggested, it would be easy to implement
and experiment with IR metrics based on combinato-

rial relevance: suppose that, in a patent search task,
patents a and b can invalidate a new patent application
only if the two are used together. Then, suppose that
a patent search system returned a at rank 1 and b at
rank 3. By assuming that the patent searcher needs to
scan the ranked list down to rank 3 in order to obtain
both of these “pieces of” relevant items, we may choose
to skip a, and label only b as relevant. Then standard
IR metrics may be computed using compute.
In summary, the isolation of labelling from metrics

computation makes ntcir eval quite flexible.
2.4 Graded Relevance
For over a decade after 1992, TREC used binary rel-

evance assessments for IR evaluation. Reflecting this
history, trec eval is basically a tool for computing
binary-relevance metrics such as Average Precision [4].
It is only recently that a patch was added to trec eval
(in version 8) so that it can compute normalised Dis-
coundted Cumulative Gain (nDCG) [9], a graded rele-
vance metric¶.
In contrast, NTCIR has used graded relevance as-

sessments from the very beginning (i.e. since 1999).
Somewhat reflecting this history, NTCIREVAL has
been designed from the very beginning as a toolkit
for evaluation with graded-relevance evaluation met-
rics. It can compute a variety of graded-relevance met-
rics which trec eval does not cover. Furthermore,
ntcir eval can compute equivalence-class versions of
different metrics, as well as a variety of diversity search
metrics. Details are provided below.

3. Traditional Ranked Retrieval
This section discusses the metrics for traditional

ranked retrieval, as well as their condensed-list and
equivalence-class versions, that ntcir eval supports.
3.1 Basic Metrics
Let us go back to Figure 1, which shows all the met-

rics computed by the compute subcommand by default.
In this figure, syslen is the size of the system output,
jrel is the number of judged relevant documents, and
jnonrel is the number of judged nonrelevant (i.e. L0)
documents. The rest of the output are various evalua-
tion metric values.
We first define binary-relevance metrics. RR is the

Reciprocal Rank: let r1 denote the rank of the first rel-
evant document in the ranked list; then RR = 1/r1. If
there is no relevant document in the list, RR is defined
to be zero. RR can be interpreted as a binary-relevance
evaluation metric for navigational queries [3], where the
user typically requires exactly one relevant document.
Let I(r) be a flag s.t. I(r) = 1 if the document

at rank r is relevant and 0 otherwise, and let C(r) =∑r
k=1 I(k), i.e. number of relevant documents between

ranks 1 and r. Then Hit at document cutoff l (where
l = 1000 by default) is defined as Hit@l = 1 if C(l) > 0
and 0 otherwise; Precision at l is defined as P@l =
C(l)/l. Furthermore, let R denote the total number of
known relevant documents. Then Average Precision is
given by:

AP =
1

R

∑

r

I(r)
C(r)

r
. (1)

AP is a popular binary-relevance evaluation metric
suitable for informational queries [3] where the user

¶I thank Ian Soboroff for the information on his trec eval
patch.

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 25

(第2分冊)

typically requires as many relevant documents as pos-
sible.
Figure 1 also shows a document cutoff-based vari-

ant of AP (AP@l), which replaces the R in Eq. 1 with
min(l, R) to ensure that the highest possible value is 1
even if l < R.
Next, we define graded-relevance metrics, which can

distinguish between (say) highly relevant and partially
relevant documents. Let g(r) denote the gain value at
rank r. For example, suppose we have L2 (relevant)
and L1 (partially relevant) documents. Then, the gain
value setting shown in Figure 1 means that g(r) = 2 if
the document at rank r is L2, and g(r) = 1 if the doc-
ument is L1, and g(r) = 0 if the document is either L0
(judged nonrelevant) or unjudged. Let the cumulative
gain at rank r be cg(r) =

∑r
k=1 g(k).

Many graded-relevance metrics rely on the notion of
the ideal ranked list [9]. This can be obtained by sorting
all known relevant documents in decreasing order of the
relevance levels. Let g∗(r) denote the gain value at rank
r in an ideal list, and let cg∗(r) =

∑r
k=1 g

∗(k). Further-
more, for a given positive parameter β (which defaults
to 1), let BR(r) = (C(r) +βcg(r))/(r+ βcg∗(r)). This
is a graded-relevance extension of precision called the
blended ratio [15].
O-measure, a graded-relevance version of RR, is de-

fined as: O-measure = BR(r1) if there is at least one
relevant document in the ranked list, and zero other-
wise. Note that the relevance level of the document at
rank r1 does not matter as long as it is at least some-
what relevant. Thus, RR and O-measure assume that
the search engine user stops scanning the ranked list
as soon as he finds one (somewhat) relevant document.
In contrast, P-measure and P+ (P-plus in Figure 1)
assume that the user goes down as far as the preferred
rank rp, which is the highest rank that has one of the
most relevant documents within the ranked list [17].
Thus, for a ranked list that contains at least one rele-
vant document, P -measure = BR(rp), and

P+ =
1

C(rp)

rp∑

r=1

I(r)BR(r) . (2)

Again, for a ranked list that does not contain a relevant
document, we define: P -measure = P+ = 0.
Q-measure is a graded-relevance extension of AP, de-

fined as [15]:

Q-measure =
1

R

∑

r

I(r)BR(r) . (3)

Also, ntcir eval computes a cutoff-based variant of
Q-measure (Q@l) [26] by replacing the R in Eq. 3 by
min(l, R).
Expected Reciprocal Rank (ERR) [6] and nERR@l

(normalised ERR at cutoff l) [26] are defined as fol-
lows. Let Pr (r) denote the relevance probability of the
document at rank r. (In our implementation, we let
Pr (r) = g(r)/(gh + 1), where gh is the gain value
for the highest relevance level.) ERR interprets this
as the probability that the user is satisfied with the
document at rank r. Thus the probability that the
user is dissatisfied with documents from ranks 1 to r is
given by dsat(r) =

∏r
k=1(1 − Pr (k)). Let Pr∗(r) and

dsat∗(r) denote the corresponding probabilities for the
ideal ranked list. Then ERR and nERR@l can be de-
fined as

ERR =
∑

r

Pr(r)dsat (r − 1)/r (4)

nERR@l =

∑l
r=1 Pr(r)dsat (r − 1)/r

∑l
r=1 Pr

∗(r)dsat ∗(r − 1)/r
. (5)

Thus, ERR is based on the expected probability that
the user is finally satisfied at rank r and stops examin-
ing the ranked list.
All of the metrics mentioned so far can be regarded

as an instance of the Normalised Cumulative Utility
(NCU) metrics family [22], whose generic form is:

NCU =
∑

r

Pr stop(r)NU (r) (6)

where Pr stop(r) is the probability that the search en-
gine user stops examining the ranked list at r and
NU (r) is a normalised utility function that should re-
flect the cost and benefit of examining the documents
down to rank r. ntcir eval supports two special stop-
ping probability distributions, as described below.
The first is the rank-biased (RB) distribution, given

by Pr stop(r) = λC(r)−1/
∑R

k=1 λ
k−1 for every rank r

with a relevant document. λ is a parameter which de-
faults to 0.95. The assumptions are that users stop
examining the ranked list at a relevant document, and
that users tend to stop at early ranks. For example,
suppose that there are R = 3 relevant documents, and
that two of them are retrieved at ranks 1 and 5, respec-
tively. Then, Pr stop(1) = 1/(1 + 0.95 + 0.952) = 0.35,
Pr stop(5) = 0.95/(1 + 0.95 + 0.952) = 0.33.
The second is the graded-uniform (GU) distribution,

given by Pr stop(r) = g(r)/
∑

r g
∗(r). The assumptions

are that users stop examining the ranked list at a rele-
vant document, and that users are more likely to stop
at a highly relevant document than at a partially rel-
evant document. For example, suppose that we have
two L2-relevant documents and one L1-relevant docu-
ments, and we assign gain values of 2 and 1 to them,
respectively. Then, for every rank where there is an
L2-relevant document, Pr stop(r) = 2/(2+2+1) = 0.4.
At the rank where there is the L1-relevant document,
Pr stop(r) = 1/(2 + 2 + 1) = 0.2.
As for the normalised utility function, ntcir eval

supports NU (r) = P (r) (precision) and NU (r) =
BR(r) (blended ratio). Thus, in Figure 1, NCUgu,P
is the NCU with the GU-distribution with NU (r) =
P (r), NCUrb,BR is the NCU with the RB-distribution
with NU (r) = BR(r), and so on.
Recall that all of the other metrics described previ-

ously can be regarded as an NCU metric. For exam-
ple, that Q-measure is an NCU with a uniform distri-
bution over all relevant documents: Pr stop(r) = 1/R;
P+ is an NCU with a uniform distribution over rel-
evant documents retrieved between ranks 1 and rp:

Pr stop(r) = 1/C(rp); P-measure (O-measure) is an
NCU with a 100% stopping probability at rank rp (r1).
Also, ntcir eval computes two versions of nor-

malised discounted cumulative gain (nDCG). The origi-
nal nDCG [9] (nDCG@l) is known to be counterintuitive:

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 26

(第2分冊)

note that nDCG@1000 in Figure 2 is 1, even though the
top ranked document is nonrelevant and the first rele-
vant document is at rank 2. This is because the original
nDCG treats a relevant document at rank 1 and one
at rank 2 equally [21]. Thus, the recommended ver-
sion of nDCG is the widely-used “Microsoft version”
(MSnDCG@l), given by [5]:

nDCG@l =

∑l
r=1 g(r)/ log(r + 1)

∑l
r=1 g

∗(r)/ log(r + 1)
. (7)

ntcir eval also computes Ranked-Biased Precision
(RBP) [11], which is a rank-sensitive version of preci-
sion:

RBP =
1− p

gh

∑

r

g(r)pr−1 (8)

where p(≤ 1) is a parameter reflecting the persistence
of the user.
In addition, ntcir eval can compute a version of

Graded Average Precision (GAP) [14] if the -gap op-
tion is used with the compute subcommand. GAP is
not computed by default as it is more computation-
ally expensive than other metrics. The exact definition
of the ntcir eval version of GAP can be found else-
where [26].
An early version of NTCIREVAL with the label

and compute subcommands has been used at the NT-
CIR ACLIA IR4QA [23], GeoTime [8] and Community
QA [24] tasks.

3.2 Condensed-List Measures
As was discussed in Section 2.3, ntcir eval can

compute evaluation metrics after removing all un-
judged documents from the original ranked list, i.e.
based on a Condensed List (CL) [19]. The resultant
metrics are referred to as CL-measures. For example,
in Figure 2 (in which -j is used with the label sub-
command), AP represents not the standard AP but its
condensed-list version, or “CL-AP”. (CL-AP has also
been referred to as induced AP [30] and AP′ [19, 21].)
CL-measures may be useful if the relevance assessments
of the test collection being used are incomplete.
Also, ntcir eval has a “hidden” option for comput-

ing CL-measures. Note that Figure 2 uses a -j option
with the label subcommand but not with the compute
subcommand. If -j is used with compute as well,
ntcir eval also outputs bpref [4], a binary-relevance
metric specifically designed for evaluation with incom-
plete relevance assessments, as well as its variants [19].
(At least one L0 document is required in the rel file to
compute bpref.) However, it has been shown that CL-
measures such as CL-AP are more reliable and intuitive
than bpref: for example, if -j is used with compute in
Figure 2, then bpref would equal zero even though the
ranked list has a relevant document at rank 2. Details
can be found elsewhere [19, 21].

3.3 Equivalence-Class Measures
As was also discussed in Section 2.3, ntcir eval

can compute evaluation metrics based on Equivalence
Classes (ECs). The resultant metrics are referred to as
EC-measures. EC-measures are useful if some relevant
items are interchangeable, e.g. answer strings in fac-
toid QA evaluation [15, 20] and duplicate documents
in IR evaluation.
By comparing Figure 1 and Figure 3, it can be ob-

served that EC-based evaluation with ntcir eval is

basically the same as the traditional ranked retrieval
evaluation. The only differences are:

• The gold standard (erel) file has a third field
which specifies the ID of an EC.

• As the -ec option is used with label, redundant
items from the same EC are ignored.

• As the -ec option is used with compute, the num-
ber of ECs in the erel files are treated as the num-
ber of relevant items. (Note that jrel=1 in Fig-
ure 3 as there is only one EC, even though there
are two relevant items.) Thus, an ideal list is con-
tructed by picking only one of the most relevant
items from each EC and then sorting them by the
relevance levels. (For Figure 3, the ideal list con-
tains b at rank 1 and nothing else.)

Note that a white space is used as the field separator
in Figure 3. However, if the IA task to be evaluated
involves ranking of strings which may contain white
spaces (e.g. answer strings for factoid QA), an alter-
native field separator should be used in the erel files.
For example, if the erel files use a semicolon as the
separator, add -sep ";" to the label and compute
subcommands.

4. Diversified Search
This section discusses the metrics for diversified

search that ntcir eval supports. Diversified search
aims to accomodate different user needs by means of
a single “entry-point” result page, when the query is
ambiguous or underspecified [25, 26].
In diversity evaluation, we assume that, for each

topic q, one or more intents i are available for evalua-
tion in advance, as well as their likelihoods Pr (i|q). For
example, if the query “apple” has two possible intents,
i1 =“Apple the company” and i2 =“apple the fruit,”
suppose that Pr (i1|q) = 0.8 and Pr (i2|q) = 0.2. (A few
methods exit for estimating these probabilities [1, 27].)
Moreover, we assume that per-intent graded relevance
assessments are available: for example, a document
about Steve Jobs may be L2-relevant to i1, but nonrel-
evant (L0) to i2; a Wikipedia disambiguation page for
the word “apple” may be L1-relevant to both i1 and i2.
Given the above premises, a family of metrics called

D-measures can be computed as follows [26]. Let gi(r)
denote the gain value with respect to intent i for the
document at rank r, assigned based on the aforemen-
tioned per-intent graded relevance assessments. Then,
let the global gain of the document at rank r be
GG(r) =

∑
i Pr(i|q)gi(r). Define an ideal ranked list,

by sorting all relevant documents by the global gain.
Let GG∗(r) denote the global gain at rank r in this
ideal list. By replacing g(r) and g∗(r) mentioned in
Section 3.1 with GG(r) and GG∗(r), respectively, we
can define “D-versions” of Q-measure, nDCG and so
on. The assumptions behind D-measures are that in-
tents are mutually exclusive, and that the gain value
gi(r) is proportional to the probability that the docu-
ment at rank r is relevant to intent i [26]. The intuitive
interpretation of D-measures is that we want a system
that rank documents that are highly relevant to ma-
jor intents above those that are marginally relevant to
minor intents.
ntcir eval computes D-measures by means of two

subcommands called glabel and gcompute. Unlike the
aforementioned label subcommand, glabel reads a

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 27

(第2分冊)

Grelv file, which is a list of documents in descending
order of global gain values (i.e. the ideal list). Hence,
glabel adds a global gain value (a real number) to
each relevant document. For example, for the afore-
mentioned “apple” query, suppose that document a is
L2-relevant to intent i1 and L1-relevant to intent i2,
and that we assign 2 and 1 to L2- and L1-relevant
documents for each intent. Then the global gain for
this document is 0.8 ∗ 2 + 0.2 ∗ 1 = 1.8. Using the
same system output example.res from Figure 1, we
can compute D-measures as shown in Figure 4.

% cat example.Grelv
a 1.8
% cat example.res | ntcir_eval glabel -I example.Grelv
c
b
a 1.8000
% cat example.res | ntcir_eval glabel -I example.Grelv |
ntcir_eval gcompute -I example.Grelv
syslen=3 jrel=1 jnonrel=0
r1=3 rp=3
RR= 0.3333
O-measure= 0.5833
P-measure= 0.5833
P-plus= 0.5833
AP= 0.3333
Q-measure= 0.5833
NCUrb,P= 0.3333
NCUrb,BR= 0.5833
RBP= 0.0451
ERR= 0.2143
AP@1000= 0.3333
Q@1000= 0.5833
nDCG@1000= 0.6309
MSnDCG@1000= 0.5000
P@1000= 0.0010
nERR@1000= 0.3333
Hit@1000= 1.0000

Figure 4: Using ntcir eval glabel and gcompute.

For example, the D-version of Q-measure (“D-Q”)
is 0.5833 because only the third document is rele-
vant and its global gain value is 1.8; since the ideal
list (example.Grelv) has this document at rank 1,
D-Q = BR(3) = (1 + 1.8)/(3 + 1.8) = 0.5833 (See
Eq. 3).
ntcit eval can also compute intent recall (a.k.a.

subtopic recall [31]). This is the number of intents cov-
ered by a ranked list divided by the total number of
intents. The subcommand irec is used to compute
intent recall, as shown in Figure 5.

% cat example.Irelv1
a 2
% cat example.Irelv2
a 1
% cat example.res
c
b
a
% ntcir_eval irec example.res example.Irelv1 example.Irelv2
#intent_num=2
I-rec@n= 0.0000
I-rec@1000= 1.0000

Figure 5: Using ntcir eval irec.

Here, the two Irelv files indicate that the local gain
values for a with respect to the two intents are 2 and 1,
respectively. As example.res has a at rank 3, and as
this document covers both intents, intent recall (I-rec)
at cutoff l = 1000 is 1. Whereas, I-rec@n is the intent
recall at rank n, where n is the number of intents. In
this example, since n = 2 and the top two documents
are nonrelevant, I-rec@n = 0.
It is recommended that D-measure values be plotted

against I-rec values in order to visualise the trade-off
between diversity and relevance [25, 26]. However, NT-
CIREVAL can also combine a D-measure with I-rec to

produce a single-value summary metric, called the D�-
measure. This is defined as follows:

D�-measure = γI-rec + (1− γ)D-measure . (9)

D�-measures are computed outside ntcir eval, and
the parameter γ can be changed within a shell script
included in NTCIREVAL. It is also recommended that
the document cutoff l for I-rec and D-measures is cho-
sen so that l ≥ n. This is to ensure that the maximum
possible I-rec value (and therefore D�-measure value)
is 1. The ongoing NTCIR-9 INTENT task‖ is using
NTCIREVAL for computing D(�)-measures.
NTCIREVAL can also compute another set of di-

versity metrics called Intent-Aware (IA) metrics [1].
However, IA metrics have weaknesses in terms of in-
tuitiveness, discriminative power, and in that they do
not range fully between 0 and 1 [25, 26].
NTCIREVAL does not compute α-nDCG, a rela-

tively widely-used diversity metric [7]. A precise com-
putation of this metric involves an NP-hard prob-
lem. α-nDCG can be regarded as an extension of
EC-measures in that it penalises retrieval of redundant
items (but not as severely as EC-measures do).

5. Summary
This paper introduced NTCIREVAL, a general

toolkit for IA evaluation. A shared toolkit like this
provides a common ground for IA researchers on which
systems can easily be compared and improved. It is
hoped that IA researchers carefully examine and choose
appropriate evaluation metrics for their purposes, and
consider improving the metrics if necessary. Also, it is
recommended that researchers use multiple evaluation
metrics to examine systems from several different an-
gles. “Different” is emphasised here, as some metrics
may be redundant when used along with similar and
more informative ones [28]. Table 2 provides some rec-
ommendations for typical search tasks [17, 21, 22, 26].

Table 2: Recommended evaluation metrics.
search task recommended metrics
Traditional IR P+, nERR
(navigational)
Traditional IR nDCG (Microsoft version),
(informational) Q-measure
Diversified IR D(�)-nDCG, D(�)-Q,

intent recall

There are many limitations to current approaches to
IA evaluation, namely the use of “offline” tools such
as NTCIREVAL. Such tools require pre-defined, static
gold-standard data, as well as system outputs that are
oversimplified compared to what are presented to real
IA system users. Thus, for example, these approaches
do not capture the real Web search user experiences,
whose information needs change dynamically through
rich interaction. Note also that the Web itself is dy-
namically evolving unlike a static test collection with
relevance assessments. However, it is hoped that offline
evaluation will remain useful for optimising basic sys-
tem components such as those for ranking items, and
will complement more complex and holistic evaluations
(e.g. [2]) that tend to be unrepeatable.

‖http://www.thuir.org/intent/ntcir9/

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 28

(第2分冊)

References
[1] Agrawal, R. et al.: Diversifying Search Results,

ACM WSDM 2009 Proceedings, pp. 5-14, 2009.

[2] Bailey, P. et al.: Evaluating Search Systems Using
Result page Context, IIiX 2010 Proceedings, 2010.

[3] Broder, A.: A Taxonomy of Web Search, SIGIR
Forum 36(2), 2002.

[4] Buckley, C. and Voorhees, E. M.: Retrieval Evalua-
tion with Incomplete Information, ACM SIGIR 2004
Proceedings, pp. 25-32, 2004.

[5] Burges, C. et al.: Learning to Rank Using Gradient
Descent, ICML 2005 Proceedings, 2005.

[6] Chapelle, O. et al.: Expected Reciprocal Rank for
Graded Relevance, ACM CIKM 2009 Proceedings,
pp. 621-630, 2009.

[7] Clarke, C. L.A. et al.: Novelty and Diversity in
Information Retrieval Evaluation, ACM SIGIR 2008
Proceedings, pp. 659-666, 2008.

[8] Gey, F. et al.: NTCIR-GeoTime Overview: Eval-
uating Geographic and Temporal Search, NTCIR-8
Proceedings, pp. 147-153, 2010.

[9] Järvelin, K. and Kekäläinen, J.: Cumulated Gain-
Based Evaluation of IR Techniques, ACM Trans-
actions on Information Systems, Vol. 20, No. 4,
pp. 422-446, 2002.

[10] Mitamura, T. et al.: Overview of the NTCIR-8
ACLIA Tasks: Advanced Cross-Lingual Information
Access, NTCIR-8 Proceedings, pp. 15-24, 2010.

[11] Moffat, A. and Jobel, J.: Rank-Biased Precision
for Measurement of Retrieval Effectiveness, ACM
TOIS 27(1), Article 2, 2008.

[12] Robertson, S.: On GMAP: and Other Transfor-
mations, ACM CIKM 2006 Proceedings, pp. 78-83,
2006.

[13] Robertson, S.: On the History of Evaluation in IR,
Journal of Information Sciences, 34(4), pp. 439-456,
2008.

[14] Robertson, S., Kanoulas, E. and Yilmaz, E.:
Extending Average Precision to Graded Relevance
Judgments, ACM SIGIR 2010 Proceedings, pp. 603-
610, 2010.

[15] Sakai, T.: New Performance Metrics based on
Multigrade Relevance: Their Application to Ques-
tion Answering, NTCIR-4 Proceedings Open Submis-
sion Session, 2004.

[16] Sakai, T.: Evaluating Evaluation Metrics based
on the Bootstrap, ACM SIGIR 2006 Proceedings,
pp. 525-532, 2006.

[17] Sakai, T.: Bootstrap-Based Comparisons of IR
Metrics for Finding One Relevant Document, AIRS
2006 Proceedings, LNCS 4182, pp. 374-389, Springer,
2006.

[18] Sakai, T.: For Building Better Retrieval Systems:
Trends in Information Retrieval Evaluation based
on Graded Relevance (in Japanese), IPSJ Magazine,
47(2), pp. 147-158, 2006.

[19] Sakai, T.: Alternatives to Bpref, ACM SIGIR
2007 Proceedings, pp. 71-78, 2007.

[20] Sakai, T.: On the Reliability of Factoid Question
Answering Evaluation, ACM TALIP, 6(1), Article 3,
2007.

[21] Sakai, T. and Kando, N.: On Information Re-
trieval Metrics Designed for Evaluation with Incom-
plete Relevance Assessments, Information Retrieval,
11(5), pp. 447-470, Springer, 2008.

[22] Sakai, T. and Robertson, S.: Modelling A User
Population for Designing Information Retrieval Met-
rics, EVIA 2008 Proceedings, pp. 30-41, 2008.

[23] Sakai, T. et al.: Overview of NTCIR-8 ACLIA
IR4QA, NTCIR-8 Proceedings, pp. 63-93, 2010.

[24] Sakai, T. et al.: Using Graded-Relevance Met-
rics for Evaluating Community QA Answer Selec-
tion, ACM WSDM 2011 Proceedings, 2011.

[25] Sakai, T.: Challenges in Diversity Evaluation,
ECIR 2011 Workshop on Diversity in Document Re-
trieval, 2011.

[26] Sakai, T. and Song, R.: Evaluating Diversified
Search Results Using Per-intent Graded Relevance,
ACM SIGIR 2011 Proceedings, to appear, 2011.

[27] Song, R. et al.: Constructing a Test Collection
with Multi-Intent Queries, EVIA 2010 proceedings,
pp. 51-59, 2010.

[28] Webber, W. et al. Precision-At-Ten Considered
Redundant, ACM SIGIR 2008 Proceedings, pp. 695-
696, 2008.

[29] White, R. W. et al.: Supporting Exploratory
Search, Communications of the ACM 49(4), 2006.

[30] Yilmaz, E. and Aslam, J. A.: Estimating Average
Precision with Incomplete and Imperfect Judgments,
CIKM 2006 Proceedings, 2006.

[31] Zhai, C., Cohen, W. W. and Lafferty, J.: Be-
yond Independent Relevance: Methods and Evalu-
ation Metrics for Subtopic Retrieval, ACM SIGIR
2003 Proceedings, pp. 10-17, 2003.

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 29

(第2分冊)

