NTCIREVAL: A Generic Toolkit for Information Access Evaluation
Tetsuya Sakai†

1. Introduction
Over the past decades, Information Access (IA) tasks have evolved and diversified. For example, in the mid-20th century, Information Retrieval (IR) was about set retrieval for libraries; then with the advent of the digital information overload era, ranked retrieval became a necessity; now in the 21st century, we are experiencing richer forms of IR such as diversified search in order to satisfy ambiguous and underspecified queries [25]. Moreover, with the progress in natural language processing, automatic Question Answering (QA) [10, 15, 20] and leveraging Community QA (CQA) data [24] have become feasible. Many of these IA tasks involve automatic ranking of items (e.g. documents or answer strings).

To ensure progress in IA research, reliable evaluation metrics are an absolute necessity. Given an IA task definition, an evaluation metric should be designed so that it can guide the system towards the right goal of that particular task. Hence, together with IA tasks, IA evaluation methods and metrics have also evolved and diversified.

This paper introduces a toolkit for evaluating a variety of IA tasks, called NTCIREVAL, designed primarily for tasks that involve ranking of items. NTCIREVAL is available at http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html. (This paper discusses the version released in April 2011.) It works on UNIX/Linux platforms. While NTCIREVAL can handle some of the ongoing and past IA tasks of NTCIR, the sesquiannual IA evaluation workshop run by National Institute of Informatics, it is a generic toolkit that can be used for other IA tasks. The main objective of this paper is to provide an overview of the philosophy behind and functionalities of NTCIREVAL, so that IA researchers can quickly understand and utilise it whenever appropriate. Because IA research relies much on experimentation, sharing such an evaluation toolkit among the IA researchers should help enhance the reproducibility of experiments, and also foster discussions on how to better evaluate IA tasks. This paper should also serve as a noncomprehensive survey of recent developments in the field of IA evaluation metrics.

The remainder of this paper is organised as follows. Section 2 discusses the design philosophy of NTCIREVAL. Section 3 explains how NTCIREVAL can be used for traditional ranked retrieval evaluation and its extensions. Section 4 explains how it can be used for diversified search evaluation. Finally, Section 5 summarises this paper and provides some general recommendations for IA researchers.

2. Design Philosophy
2.1 Overview
NTCIREVAL consists of a simple C program called ntcir_eval and some shell scripts. ntcir_eval has been designed to work for a single topic (i.e. search request): it basically compares a system output with a gold standard (i.e. “right answers”) for that particular topic. It has several subcommands for different IA tasks, some of which are shown in Table 1. As this paper is designed to introduce only the general principles of NTCIREVAL, we refer the reader to the README files for details on the arguments and options that can be used with ntcir_eval and with the shell scripts.

Compared to trec_eval‡, a C program that has been widely used at the Text Retrieval Conference (TREC) and other IR evaluation workshops for over a decade (with numerous updates), NTCIREVAL has several characteristics. For the purpose of discussing these characteristics in Sections 2.2-2.4, Figure 1 shows a very simple example of how ntcir_eval can be used on a command line:

```bash
% cat example.rel
a L1
b L0
% cat example.res
b
% cat example.res | ntcir_eval label -r example.rel |
```

Figure 1: An example usage of ntcir_eval.

Here, example.rel is a relevance assessment file and example.res is a system’s ranked list for a particular topic. a, b and c represent retrieved items (e.g. document IDs), and L0 and L1 are relevance labels. L0 represents an item that was judged to be non-relevant, while L1 represents an item that was judged to be relevant with a relevance level of 1. The rest of the information shown in Figure 1 will be discussed later.

2.2 Per-topic Execution
IA evaluation often relies on a test collection with a set of topics with relevance assessments. Thus, at TREC, for example, a program (like trec_eval) typically reads a qrels file (a single file containing the relevance assessments for all topics) and a run file (a single file containing the ranked list of documents for all topics), and output evaluation metrics for each topic as well as summary statistics such as the mean of each metric over the topic set.

In contrast, as Figure 1 shows, ntcir_eval works only for a single topic: it reads a gold standard file, reads a system output and then computes metrics for a

†Microsoft Research Asia tetsuyasakai@acm.org
‡http://trec.nist.gov/trec_eval/
Table 1: ntcir eval subcommands.

<table>
<thead>
<tr>
<th>Section 3.</th>
<th>Section 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(traditional ranked retrieval)</td>
<td>(diversified search)</td>
</tr>
<tr>
<td><code>label</code></td>
<td><code>glabel</code></td>
</tr>
<tr>
<td>adds relevance labels to a ranked list</td>
<td>computes evaluation metrics for an output from <code>glabel</code></td>
</tr>
<tr>
<td><code>compute</code></td>
<td><code>gcompute</code></td>
</tr>
<tr>
<td>computes evaluation metrics for an output from <code>label</code></td>
<td>computes evaluation metrics for an output from <code>glabel</code></td>
</tr>
<tr>
<td><code>lrec</code></td>
<td></td>
</tr>
<tr>
<td>computes intent recall for a ranked list</td>
<td></td>
</tr>
</tbody>
</table>

2.3 Labelling/Computation Separation

The C program `ntcir_eval` itself has a few unique features. One of them is related to the aforementioned per-topic analysis of experimental results. It can be observed in Figure 1 that `ntcir_eval` isolates the process of labelling the system output from that of metrics computation, by means of the two subcommands `label` and `compute`. Here, `labelling` refers to the process of determining which items in the system output should be considered relevant.

Figure 1 includes a very simple example of labelling: `ntcir_eval` compares the `res` (system’s result) file with the `rel` (relevance assessment) file, and adds appropriate relevance labels to the system output. The first advantage of isolating the labelling process from metrics computation is that it helps the NTCIREVAL user manually examine the quality of each system output: he can easily see which item is relevant, as well as how relevant. But there are more advantages, as discussed below.

Figure 2 shows what happens when the `-j` (“judged”) option is used with the `label` subcommand. In IR evaluation based on pooling where relevance assessments are performed only for items that have been retrieved by at least one participating system [13], items can be categorised into the following three classes: (i) judged relevant items (i.e. items included in the pool and judged to be relevant); (ii) judged irrelevant items (i.e. items included in the pool and judged to be irrelevant, represented as L0); and (iii) unjudged items (i.e. items that were not in the pool and therefore we do not know whether they are relevant or not). It can be observed that, while all three items are output by the `label` command in Figure 1, the unjudged item c is not output by the `label` command in Figure 2, because of the `-j` option. A ranked list whose unjudged documents have been removed in this way is called a condensed list. It has been shown that if IR metrics are computed based on a condensed list instead of the original ranked list, they can provide more reliable results when the relevance assessments are incomplete (i.e. there are many relevant documents that have not been identified) [4, 19, 21]. Thus, the metrics shown in Figure 2 are condensed-list versions of the original metrics. We shall discuss them again in Section 3.2.

Figure 3 shows another example of utilising the fact that `ntcir_eval` isolates labelling from metrics computation. Here, instead of `example.rel` which we used in Figure 1, a slightly modified gold-standard file called `example.ere` is used. This file has a third field, which represents the ID of an equivalence class to which each item belongs. Note that a `-ec` option is used with both `label` and `compute` in order to declare that the `ere` file contains equivalence class information. Evaluation based on equivalence classes is useful, for example, for evaluating ranked lists of answer strings in factoid QA [15, 20]. For example, in response to a question: “Who wrote songs for The Beatles with John particular topic. The shell scripts take care of running `ntcir_eval` for every topic, computing means, and so on. This reflects the view that what is happening per topic is central to IA evaluation. Moreover, this design allows researchers to flexibly use different evaluation settings for different topics, as illustrated below.

Let us go back to the last command in Figure 1. This command first uses the `label` subcommand to add relevance labels to the system’s ranked list, and then feeds the output to the `compute` subcommand to compute evaluation metrics. The `compute` subcommand specifies a relevance assessment file by a `-r` option, and also specifies the `gain` `values` [9] for computing graded relevance metrics by a `-g` option. Here, `-g` serves the following two purposes: (1) declare that the highest relevance level is 2 (by specifying two values separated by a colon); and (2) set the gain value for L1 to be 1 and for L2 to be 2. If the NTCIREVAL user wants to use exactly the same options for every topic, he can hard-code them within a shell script that runs `ntcir_eval` for every topic. (A sample script is included in NTCIREVAL.) Alternatively, if he wants to set the options per topic, he can write a shell script for that purpose. For example, he may choose to write a script that first examines the highest relevance label within the `rel` file (which in the case of `example.rel` is L1), and then dynamically set the `-g` option accordingly (e.g. `-g 1` for some topics and `-g 1:2` for other topics). Dynamically changing the highest relevance level `h (≥ 1)` across topics will affect metrics that directly relies on `h`, such as Expected Reciprocal Rank [6] and Rank-Biased Precision [11]: Section 3.1 discusses these metrics.

NTCIREVAL also contains some scripts for splitting “TREC-style” qrels files and run files into per-topic files\(^5\). Thus, with NTCIREVAL, a directory is created for every topic, computing means, and so on. Outputs and intermediate results are stored under each topic directory. This facilitates per-topic failure analysis, which is vital for advancing the state-of-the-art of IA technologies.

Furthermore, while NTCIREVAL contains some scripts for computing arithmetic means of per-topic metric values output by `ntcir_eval`, note that the arithmetic mean is not the only possible way to summarise a system’s performance. For example, one can easily write a shell script that computes geometric means in order to pay more attention to “hard” topics (i.e. those for which the system performs poorly) [12, 16]. This is another benefit of separating the computation of per-topic performances from that of overall summary statistics.

\(^5\)The scripts for splitting the run files take the original rankings in the run files “as is,” not allowing any weak ordering. Thus it is the system’s responsibility to break ties. This is in contrast to `trec_eval`, which, for historical reasons, re-ranks document IDs internally based on the scores given within the run files.
Figure 3: Using \texttt{ntcir_eval compute} -ec -r example.rel -g 1:2
\begin{verbatim}
system2 jrel=1 jnonrel=0
r1=2 r2=2
RR= 0.5000
Q-measure= 0.6667
P-measure= 0.6667
P-plus= 0.6667
AP= 0.5000
Q-measure= 0.6667
NCCrel,P= 0.5000
NCCrel,B= 0.6667
NCCrel,BR= 0.6667
RE= 0.0238
ER= 0.1667
AP1000= 0.5000
Q@1000= 0.6667
nDCG@1000= 1.0000
nERR@1000= 0.5000
P@1000= 0.0010
Q@1000= 0.6667
AP@1000= 0.5000
ERR= 0.1667
RBP= 0.0238
NCUrb,BR= 0.6667
NCUrb,P= 0.5000
NCUgu,BR= 0.6667
NCUgu,P= 0.5000
Q-measure= 0.6667
P-measure= 0.6667
O-measure= 0.6667
RR= 0.5000
\end{verbatim}

\textbf{Figure 3: Using \texttt{ntcir}_eval label with -j.}

Lennon? suppose that a system returned “Paul McCartney” at rank 2 and “McCartney” at rank 3, and that these two answer strings form an equivalence class (i.e. they are interchangeable). Then, EC-based evaluation can penalise this redundancy by treating the correct answer at rank 3 as if it is nonrelevant. The \texttt{el} command in Figure 3 does exactly this: although \texttt{a} in \texttt{example.res} is a correct item according to \texttt{example.rel}, it is not marked as relevant because a correct answer from the same equivalence class has already been found at rank 2, namely, \texttt{b}.

% cat example.res | ntcir_eval label -ec -r example.rel
b L0
a L1 % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -ec -r example.rel | ntcir_eval compute -ec -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel | % cat example.res | ntcir_eval label -j -r example.rel | ntcir_eval compute -j -r example.rel |

Figure 3: Using \texttt{ntcir}_eval label and \texttt{compute} with -ec.

In Figure 3, the \texttt{compute} subcommand with -ec takes the result of \texttt{label} (also with -ec) and then computes IR metrics just as in Figure 1. The only difference here is that now the total number of equivalence classes is taken as the number of relevant items. Section 3.3 will discuss more on these equivalence-class versions of the original metrics.

Because of this separation between labelling and metrics computation, other labelling strategies can easily be implemented if required. For example, as Sakai [18] suggested, it would be easy to implement and experiment with IR metrics based on combinatorial relevance: suppose that, in a patent search task, patents \texttt{a} and \texttt{b} can invalidate a new patent application only if the two are used together. Then, suppose that a patent search system returned \texttt{a} at rank 1 and \texttt{b} at rank 3. By assuming that the patent searcher needs to scan the ranked list down to rank 3 in order to obtain both of these “pieces of” relevant items, we may choose to skip \texttt{a}, and label only \texttt{b} as relevant. Then standard IR metrics may be computed using \texttt{compute}.

In summary, the isolation of labelling from metrics computation makes \texttt{ntcir}_eval quite flexible.

\section{2.4 Graded Relevance}

For over a decade after 1992, TREC used binary relevance assessments for IR evaluation. Reflecting this history, \texttt{trec}_eval is basically a tool for computing binary-relevance metrics such as Average Precision [4]. It is only recently that a patch was added to \texttt{trec}_eval (in version 8) so that it can compute normalised Discounted Cumulative Gain (nDCG) [9], a graded relevance metric.\footnote{I thank Ian Soboroff for the information on his \texttt{trec}_eval patch.}

In contrast, NTCIR has used graded relevance assessments from the very beginning (i.e. since 1999). Somewhat reflecting this history, NTCIREVAL has been designed from the very beginning as a toolkit for evaluation with graded-relevance evaluation metrics. It can compute a variety of graded-relevance metrics which \texttt{trec}_eval does not cover. Furthermore, \texttt{ntcir}_eval can compute equivalence-class versions of different metrics, as well as a variety of diversity search metrics. Details are provided below.

\section{3. Traditional Ranked Retrieval}

This section discusses the metrics for traditional ranked retrieval, as well as their condensed-list and equivalence-class versions, that \texttt{ntcir}_eval supports.

\subsection{3.1 Basic Metrics}

Let us go back to Figure 1, which shows all the metrics computed by the \texttt{compute} subcommand by default. In this figure, \texttt{syslen} is the size of the system output, \texttt{jrel} is the number of judged relevant documents, and \texttt{jnonrel} is the number of judged nonrelevant (i.e. L0) documents. The rest of the output are various evaluation metric values.

We first define binary-relevance metrics. RR is the Reciprocal Rank: let r_1 denote the rank of the first relevant document in the ranked list; then $RR = 1/r_1$. If there is no relevant document in the list, RR is defined to be zero. RR can be interpreted as a binary-relevance evaluation metric for navigational queries [3], where the user typically requires exactly one relevant document.

Let $I(r)$ be a flag s.t. $I(r) = 1$ if the document at rank r is relevant and 0 otherwise, and let $C(r) = \sum_{k=1}^{r} I(k)$, i.e. number of relevant documents between ranks 1 and r. Then Hit at document cutoff l (where $l = 1000$ by default) is defined as $Hit@l = 1$ if $C(l) > 0$ and 0 otherwise; Precision at l is defined as $Precision@l = C(l)/l$. Furthermore, let R denote the total number of known relevant documents. Then Average Precision is given by:

$$AP = \frac{1}{R} \sum_{r} I(r) \frac{C(r)}{r}.$$ \hspace{1cm} (1)

AP is a popular binary-relevance evaluation metric suitable for informational queries [3] where the user...
Figure 1 also shows a document cutoff-based variant of AP (AP[9]), which replaces the R in Eq. 1 with $\min(l, R)$ to ensure that the highest possible value is 1 even if $l < R$.

Next, we define graded-relevance metrics, which can distinguish between (say) highly relevant and partially relevant documents. Let $g(r)$ denote the gain value at rank r. For example, suppose we have L2 (relevant) and L1 (partially relevant) documents. Then, the gain value setting shown in Figure 1 means that $g(r) = 2$ if the document at rank r is L2, and $g(r) = 1$ if the document is L1, and $g(r) = 0$ if the document is either L0 (judged nonrelevant) or unjudged. Let the cumulative gain at rank r be $cg(r) = \sum_{k=1}^{r} g(k)$.

Many graded-relevance metrics rely on the notion of the ideal ranked list. Then ERR and $n\text{ERR}@l$ can be defined as

$$\text{ERR} = \frac{\sum_{r=1}^{l} \text{Pr}(r) \text{dsat}(r-1)/r}{\text{dsat}(r-1)/r}$$

$$n\text{ERR}@l = \frac{\sum_{r=1}^{l} \text{Pr}(r) \text{dsat}(r-1)/r}{\sum_{r=1}^{l} \text{Pr}^*(r) \text{dsat}^*(r-1)/r}.$$

Thus, ERR is based on the expected probability that the user is finally satisfied at rank r and stops examining the ranked list.

All of the metrics mentioned so far can be regarded as an instance of the Normalised Cumulative Utility (NCU) metrics family [22], whose generic form is:

$$\text{NCU} = \sum_{r} \text{Pr}_{\text{stop}}(r) \text{NU}(r)$$

where $\text{Pr}_{\text{stop}}(r)$ is the probability that the search engine user stops examining the ranked list at r and $\text{NU}(r)$ is a normalised utility function that should reflect the cost and benefit of examining the documents down to rank r. $\text{ntcir}_{\text{eval}}$ supports two special stopping probability distributions, as described below.

The first is the rank-biased (RB) distribution, given by $\text{Pr}_{\text{stop}}(r) = \lambda^{R-1} \sum_{k=1}^{R} \lambda^{k-1}$ for every rank r with a relevant document. λ is a parameter which defaults to 0.95. The assumptions are that users stop examining the ranked list at a relevant document, and that users tend to stop at early ranks. For example, suppose that there are $R = 3$ relevant documents, and that two of them are retrieved at ranks 1 and 5, respectively. Then, $\text{Pr}_{\text{stop}}(1) = 1/(1 + 0.95 + 0.95^{2}) = 0.35,$ $\text{Pr}_{\text{stop}}(5) = 0.95/(1 + 0.95 + 0.95^{2}) = 0.33$. The second is the graded-uniform (GU) distribution, by $\text{Pr}_{\text{stop}}(r) = g(r)/\sum_{l} g(l)$. The assumptions are that users stop examining the ranked list at a relevant document, and that users are more likely to stop at a highly relevant document than at a partially relevant document. For example, suppose that we have two L2-relevant documents and one L1-relevant document, and we assign gain values of 2 and 1 to them, respectively. Then, for every rank where there is an L2-relevant document, $\text{Pr}_{\text{stop}}(r) = 2/(2 + 2 + 1) = 0.4$. At the rank where there is the L1-relevant document, $\text{Pr}_{\text{stop}}(r) = 1/(2 + 2 + 1) = 0.2$. As for the normalised utility function, $\text{ntcir}_{\text{eval}}$ supports $\text{NU}(r) = P(r)$ (precision) and $\text{NU}(r) = \text{BR}(r)$ (blended ratio). Thus, in Figure 1, NCUgu,P is the NCU with the GU-distribution with $\text{NU}(r) = P(r)$, NCUrb,BR is the NCU with the RB-distribution with $\text{NU}(r) = \text{BR}(r)$, and so on.

Recall that all of the other metrics described previously can be regarded as an NCU metric. For example, that Q-measure is an NCU with a uniform distribution over all relevant documents: $\text{Pr}_{\text{stop}}(r) = 1/R$; P^+ is an NCU with a uniform distribution over relevant documents retrieved between ranks 1 and r_p: $\text{Pr}_{\text{stop}}(r) = 1/C(r_p)$; P-measure (O-measure) is an NCU with a 100% stopping probability at rank r_p (r_1).

Also, $\text{ntcir}_{\text{eval}}$ computes two versions of normalised discount cumulative gain (nDGC). The original nDGC [9] (nDGC[1]) is known to be counterintuitive:
note that nDCG@1000 in Figure 2 is 1, even though the
top ranked document is nonrelevant and the first rele-
vant document is at rank 2. This is because the original
nDCG treats a relevant document at rank 1 and one at
rank 2 equally [21]. Thus, the recommended ver-
ion of nDCG is the widely-used “Microsoft version”
(MSnDCG@1), given by [5]:
\[
\text{nDCG@l} = \frac{\sum_{r=1}^{l} g(r)/\log(r+1)}{\sum_{r=1}^{l} g^*(r)/\log(r+1)}.
\]

\text{ntcir eval} also computes Ranked-Biased Precision
(RBP) [11], which is a rank-sensitive version of preci-
sion:
\[
\text{RBP} = \frac{1}{g} \sum_{r} g(r)p^{r-1}
\]
where \(p (\leq 1)\) is a parameter reflecting the persistence
of the user.
In addition, \text{ntcir eval} can compute a version of
Graded Average Precision (GAP) [14] if the \(-gap\) op-
tion is used with the \text{compute} subcommand. GAP is not
computed by default as it is more computationally
expensive than other metrics. The exact definition of
the \text{ntcir eval} version of GAP can be found else-
where [26].
An early version of NTCIREVAL with the \text{label}
and \text{compute} subcommands has been used at the NTC-
CIR ACLIA IR4QA [23], GeoTime [8] and Community

3.2 Condensed-List Measures
As was discussed in Section 2.3, \text{ntcir eval}
can compute evaluation metrics after removing all un-
judged documents from the original ranked list, i.e.
based on a Condensed List (CL) [19]. The resultant
metrics are referred to as CL-measures. For example,
in Figure 2 (in which \(-j\) is used with the \text{label}
subcommand), AP represents not the standard AP but its
condensed-list version, or “CL-AP”. (CL-AP has also
been referred to as \text{induced AP} [30] and \text{AP’} [19, 21].)
CL-measures may be useful if the relevance assessments
of the test collection being used are incomplete.
Also, \text{ntcir eval} has a “hidden” option for computing
CL-measures. Note that Figure 2 uses a \(-j\) option
with the \text{label} subcommand but not with the \text{compute}
subcommand. If \(-j\) is used with \text{compute} as well,
\text{ntcir eval} also outputs bpref [4], a binary-relevance
metric specifically designed for evaluation with incom-
plete relevance assessments, as well as its variants [19].
(At least one \text{L0} document is required in the \text{rel} file to
compute bpref.) However, it has been shown that CL-
measures such as CL-AP are more reliable and intu-
teive than bpref: for example, if \(-j\) is used with \text{compute}
in Figure 2, then bpref would equal zero even though
the ranked list has a relevant document at rank 2. Details
can be found elsewhere [19, 21].

3.3 Equivalence-Class Measures
As was also discussed in Section 2.3, \text{ntcir eval}
can compute evaluation metrics based on Equivalence
Classes (ECs). The resultant metrics are referred to as
\text{EC-measures}. EC-measures are useful if some relevant
items are interchangeable, e.g. answer strings in fac-
toid QA evaluation [15, 20] and duplicate documents
in IR evaluation.
By comparing Figure 1 and Figure 3, it can be ob-
served that EC-based evaluation with \text{ntcir eval} is
basingly the same as the traditional ranked retrieval evalua-
tion. The only differences are:

- The gold standard (\text{ere1}) file has a third field
which specifies the ID of an EC.

- As the \text{--ec} option is used with \text{label}, redundant
items from the same EC are ignored.

- As the \text{--ec} option is used with \text{compute}, the num-
ber of ECs in the \text{ere1} files are treated as the num-
ber of relevant items. (Note that \text{ere1} in Fig-
ure 3 as there is only one EC, even though there
are two relevant items.) Thus, an ideal list is con-
structed by picking only one of the most relevant
items from each EC and then sorting them by the
relevance levels. (For Figure 3, the ideal list con-
tains \text{b} at rank 1 and nothing else.)

Note that a white space is used as the field separator
in Figure 3. However, if the IA task to be evaluated
involves ranking of strings which may contain white
spaces (e.g. answer strings for factoid QA), an alter-
native field separator should be used in the \text{ere1}
files. For example, if the \text{ere1} files use a semicolon as the
separator, add \text{--sep ";"} to the \text{label} and \text{compute}
subcommands.

4. Diversified Search
This section discusses the metrics for diversified search
that \text{ntcir eval} supports. Diversified search aims to
accommodate different user needs by means of a single
“entry-point” result page, when the query is
ambiguous or underspecified [25, 26].
In diversity evaluation, we assume that, for each
topic \(q\), one or more intents \(i\) are available for eval-
uation in advance, as well as their likelihoods \(Pr(i|q)\).
For example, if the query “apple” has two possible intents,
\(i_1 = \text{Apple the company}\) and \(i_2 = \text{the fruit,}\)
suppose that \(Pr(i_1|q) = 0.8\) and \(Pr(i_2|q) = 0.2\). (A few
methods exit for estimating these probabilities [1, 27].) Moreover, we assume that per-intent graded relevance
assessments are available: for example, a document
about Steve Jobs may be L2-relevant to \(i_1\), but nonre-
levant (L0) to \(i_2\); a Wikipedia disambiguation page for
the word “apple” may be L1-relevant to both \(i_1\) and \(i_2\).
Given the above premises, a family of metrics called
\text{D-measures} can be defined as follows [26]. Let \(g(r)\)
denote the gain value with respect to intent \(i\) for the
document at rank \(r\), assigned based on the afore-
mentioned per-intent graded relevance assessments.
Then, let the \text{global gain} of the document at rank \(r\) be
\(GG(r) = \sum_{i} Pr(i|q)g_i(r)\). Define an ideal ranked list,
by sorting all relevant documents by the global gain.
Let \(GG^*(r)\) denote the global gain at rank \(r\) in this
ideal list. By replacing \(g(r)\) and \(g^*(r)\) mentioned in
Section 3.1 with \(GG(r)\) and \(GG^*(r)\), respectively, we
can define “\text{D-versions}” of Q-measure, nDCG and so
on. The assumptions behind D-measures are that in-
tents are mutually exclusive, and that the gain value
\(g_i(r)\) is proportional to the probability that the docu-
ment at rank \(r\) is relevant to intent \(i\) [26]. The intuitive
interpretation of D-measures is that we want a system
that rank documents that are highly relevant to ma-

or intents above those that are marginally relevant to
minor intents.
\text{ntcir eval} computes D-measures by means of two
subcommands called \text{glabel} and \text{gcompute}. Unlike the
aforementioned \text{label} subcommand, \text{glabel} reads a
Grelv file, which is a list of documents in descending order of global gain values (i.e. the ideal list). Hence, glabel adds a global gain value (a real number) to each relevant document. For example, for the aforementioned “apple” query, suppose that document a is L2-relevant to intent i_1 and L1-relevant to intent i_2, and that we assign 2 and 1 to L2- and L1-relevant documents, respectively. Then the global gain for this document is $0.8 \ast 2 + 0.2 \ast 1 = 1.8$. Using the same system output example.res from Figure 1, we can compute D-measures as shown in Figure 4.

```
% cat example.Grelv
a 1.8
% cat example.res | ntcir_eval glabel -I example.Grelv
% cat example.Grelv
% cat example.res | ntcir_eval gcompute -I example.Grelv
% cat example.Grelv | ntcir_eval gcompute -I example.Grelv
```

Figure 4: Using ntcir_eval glabel and gcompute.

For example, the D-version of Q-measure (“D-Q”) is 0.5833 because only the third document is relevant and its global gain value is 1.8; since the ideal list (example.Grelv) has this document at rank 1, $D-Q = BR(3) = (1 + 1.8)/(3 + 1.8) = 0.5833$ (See Eq. 3).

ntcir_eval can also compute intent recall (a.k.a. subtopic recall [31]). This is the number of intents covered by a ranked list divided by the total number of intents. The subcommand irec is used to compute intent recall, as shown in Figure 5.

```
% cat example.Irelv1
a 2
% cat example.Irelv2
a 1
% cat example.res
b
c
% ntcir_eval irec example.res example.Irelv1 example.Irelv2
t # system=3 jrel=1 jnonrel=0
# r1=3 rp=3
% ntcir_eval arec -I example.Grelv
nDCG=
2-

1

3

0

0

1

1

0

0

Figure 5: Using ntcir_eval irec.

Here, the two Irelv files indicate that the local gain values for a with respect to the two intents are 2 and 1, respectively. As example.res has a at rank 3, and as this document covers both intents, intent recall (I-rec) at cutoff $l = 1000$ is 1. Whereas, I-rec@n is the intent recall at rank $n$, where $n$ is the number of intents. In this example, since $n = 2$ and the top two documents are nonrelevant, I-rec@n = 0.

It is recommended that D-measure values be plotted against I-rec values in order to visualise the trade-off between diversity and relevance [25, 26]. However, NTCIREVAL can also combine a D-measure with I-rec to produce a single-value summary metric, called the D♯-measure. This is defined as follows:

$$D♯-measure = \gamma I-rec + (1 - \gamma) D-measure.$$  \hspace{1cm} (9)

D♯-measures are computed outside ntcir_eval, and the parameter $\gamma$ can be changed within a shell script included in NTCIREVAL. It is also recommended that the document cutoff $l$ for I-rec and D-measures is chosen so that $l \geq n$. This is to ensure that the maximum possible I-rec value (and therefore D♯-measure value) is 1. The ongoing NTCIR-9 INTENT task\footnote{http://www.thuir.org/intent/ntcir9/} is using NTCIREVAL for computing D♯(2)-measures.

NTCIREVAL can also compute another set of diversity metrics called Intent-Aware (IA) metrics [1]. However, IA metrics have weaknesses in terms of intuitiveness, discriminative power, and in that they do not range fully between 0 and 1 [25, 26].

NTCIREVAL does not compute $\alpha$-nDCG, a relatively widely-used diversity metric [7]. A precise computation of this metric involves an NP-hard problem. $\alpha$-nDCG can be regarded as an extension of EC-measures in that it penalises retrieval of redundant items (but not as severely as EC-measures do).

5. Summary

This paper introduced NTCIREVAL, a general toolkit for IA evaluation. A shared toolkit like this provides a common ground for IA researchers on which systems can easily be compared and improved. It is hoped that IA researchers can carefully examine and choose appropriate evaluation metrics for their purposes, and consider improving the metrics if necessary. Also, it is recommended that researchers use multiple evaluation metrics to examine systems from several different angles. “Different” is emphasised here, as some metrics may be redundant when used along with similar and more informative ones [28]. Table 2 provides some recommendations for typical search tasks [17, 21, 22, 26].

<table>
<thead>
<tr>
<th>search task</th>
<th>recommended metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional IR (navigational)</td>
<td>P↑, nERR</td>
</tr>
<tr>
<td>Traditional IR (informational)</td>
<td>nDCG (Microsoft version), Q-measure</td>
</tr>
<tr>
<td>Diversified IR</td>
<td>D♯-nDCG, D♯-Q, intent recall</td>
</tr>
</tbody>
</table>

There are many limitations to current approaches to IA evaluation, namely the use of “offline” tools such as NTCIREVAL. Such tools require pre-defined, static gold-standard data, as well as system outputs that are oversimplified compared to what are presented to real IA system users. Thus, for example, these approaches do not capture the real Web search user experiences, whose information needs change dynamically through rich interaction. Note also that the Web itself is dynamically evolving unlike a static test collection with relevance assessments. However, it is hoped that offline evaluation will remain useful for optimising basic system components such as those for ranking items, and will complement more complex and holistic evaluations (e.g. [2]) that tend to be unrepeatable.

\hspace{1cm}
References


