電動車椅子用周辺状況把握システムの実装と評価
Implementation and evaluation of surround HMD devices for wheelchairs

堀越 大輔† 田村 仁‡ 片山 茂友‡
Daisuke HORIKOSHI Hitoshi TAMURA Shigetomo KATAYAMA

1. はじめに
近年、電動車椅子の交通事故が少なからず起きており、警察庁交通局によると平成18年から平成22年まで毎年200件以上発生している(表1)[1]。過去5年間における電動車椅子に係る事故の特徴を見ると、日中の時間帯に交通事故が多く、中でも特に横断歩道の事故が一番多い(表2)。

<table>
<thead>
<tr>
<th>年度</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>死者(人)</td>
<td>10</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>全事故(件)</td>
<td>258</td>
<td>228</td>
<td>232</td>
<td>232</td>
<td>258</td>
</tr>
</tbody>
</table>

2. 事故原因の主な理由として、人は歩行して移動する際に、たやすく、音、目を動かし周辺の状況を確認しながら移動している。しかし、電動車椅子に乗る視点が低くなる、固定されるなどにより視点移動範囲の制限が出てくる。そのため、人が歩行する際の障害物にならないものが電動車椅子の乗者としては、死角に入り込み障害になるといった問題が生じる。そこで本研究では周辺状況を把握できるインタフェースを製作し、視覚補助を行い未然に事故を防止することを目的とする。

2.1 関連研究
周辺の状況を把握するシステムは、カメラを使用する方法がある[2][3][4][5]。
佐藤らの提案[2]では、36 個のカメラを使用して車両画像と距離情報を取って、電動車椅子への障害物や速度などを全方位にて観察して自動的に減速、停止の他、ジェスチャーや乗車車両を認識する機能を持っている。しかし、車両状況を、車両を中心の半径 4m のみ把握し自律移動をするためのシステムであるため、本研究の目的である視覚補助とは別物である。

自動車用の視覚補助システムは様々なものが提案されている。トヨタのインタリジェントパーキングアシスト[3]では、車の車庫入れや縦横駐車を行う際に、車後部に取り付けたカメラと車前部に取り付けたセンサーを使用し、駐車場を画像認識し目標駐車位置を設定し、自動でステアリング操作を行う。しかしこのシステムは駐車時の障害物を、周囲の状況把握ができない。

日産自動車のアラウンドビューモニター[4]では、自動車の駐車用で、4 個の超広角カメラを使用し、その映像を合成し自動車を見下ろした映像や、それぞれの超広角カメラからの映像を表示する。しかしこのアラウンドビューモニターの映像では、対象を軸とした位置関係はわかりやすいうけるが距離感を掴みにくい。

ホンダのマルチビューカラシステム[5]では、自動車の駐車や周囲の状況を幅広い角の周囲状況を把握する際に、車の前後左右に魚眼カメラを設置し、4 つの画像を合成し車の下ろした画像や、前方の画像を合成したステレオ画像や、それぞれの魚眼カメラからの画像を合成し車の走行時の走行状態や車の幅を合成して表示する。しかし、このシステムは車用である。電動車椅子用にそのまま使用することは前提としている。

電動車椅子用の視覚補助システムとしては[6][7][8]が提案されている。

3. 設計概要
電動車椅子使用者の視界における問題は椅子に座った状態であるため、視点位置が低く見通しが悪い点、また姿勢が固定されているため視界を足回りに死角が存在する点の 2 つを考えられる。

本研究では 2 種類のモードの設計を行った。まず一つ目はラウンドモードにし、ロードマウントディスプレイ以下の HMD に固定した、三角加速度センサーを用いて頭の傾きを取得し、高い視点での全方位カメラによる全方位映像から、センサーの数値に応じた方向の映像を切り出し、HMD に表示する。これにより使用者は、高い視点で周辺を見渡す事が可能になり、ジョイスティック、スイッチやボタンなどの従来使用されている機器と違いない、手を使わずに操作可能である。頭の向きを目的的方向に回転させ、その角度の映像を提示する方法が考えられるが、車椅子走行中では進行方向以外に視界を大きくさせる事は危険と考えた。このことから頭を左右に傾け切り替える方法を提案した(図 2)(図 3)。

†日本工業大学 大学院 情報工学専攻 Computer and Engineering Major Graduate School of Nippon Institute of Technology Japan
‡日本工業大学 工学部 Faculty of Engineering Nippon Institute of Technology
二つ目はパワードビューモードとし、電動車椅子に魚眼カメラを設置し、車輪周辺の画像を取得、リアルタイムで使用者へ情報を提供する。撮影は電動車椅子の右側面、背面、左側面の3方向から行い、鳥瞰図を合成する。情報を表示する媒体としてHMDを使用する。これにより電動車いすの両側面、背面の死角を無くす事ができる（図4）。

パワードビューモードの実装のために魚眼カメラから撮影した3方向からの映像の出力を行う。しかし、円周魚眼レンズでの撮影像には歪みが存在する。そのままの情報から提出すると電動車椅子使用者に正しい情報が伝わりにくい。従って歪みを補正し、同時に出力した（図6）。動作環境としてCPU AMD Athlon（tm）64 Processor3500、RAM 2GBを使用した。

両モードの切り替えは手本のスイッチで行う。

パノラマ化した画像(a)

全方位カメラの画像(b) 切り出し画像(c)

図3 全方位カメラ取り付け位置

図4 魚眼カメラ取り付け位置と使用者

図5 サラウンドモード

図6 パワードビューモード

4. 実装
サラウンドモードの実装のために、頭部に装着した加速度センサーによる頭部の傾きの値をマイコン側で取得し、全方位カメラで取得した画像を同期させる必要がある。動作環境としてCPU Pentium4 3.0GHz、RAM 2GB、を使用し以下の通りで処理を行った（図5）。

(1) 全方位カメラの画像を取得
(2) 加速度センサーによる傾き値を取得
(3) 全方位の画像をパノラマ化
(4) 傾き値に対応する領域だけを切り出す
(5) 切り出し画像をHMDに出力

5. 評価実験
サラウンドモード、パワードビューモードそれぞれの両モードの評価実験を行った。

5.1 サラウンドモードの評価実験
サラウンドモードの評価として、周期の目的とする複数の場所をHMDに表示する実験を行った。この実験では5つの地点を表示させる時間を測り、利用者の操作良さを示す評価とする。全方位カメラの下に椅子を置き、被
5.3 実験結果
それぞれの実験結果は以下の通りである

<table>
<thead>
<tr>
<th></th>
<th>個人平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験者A</td>
<td>33.2</td>
</tr>
<tr>
<td>被験者B</td>
<td>37.3</td>
</tr>
<tr>
<td>被験者C</td>
<td>31.1</td>
</tr>
<tr>
<td>被験者D</td>
<td>43.6</td>
</tr>
<tr>
<td>被験者E</td>
<td>45.6</td>
</tr>
<tr>
<td>被験者F</td>
<td>42.1</td>
</tr>
<tr>
<td>被験者G</td>
<td>56.1</td>
</tr>
<tr>
<td>被験者H</td>
<td>41.2</td>
</tr>
<tr>
<td>被験者I</td>
<td>42.3</td>
</tr>
<tr>
<td>被験者J</td>
<td>32.5</td>
</tr>
<tr>
<td>平均</td>
<td>40.5</td>
</tr>
</tbody>
</table>

表2 魚眼カメラ側の実験結果

<table>
<thead>
<tr>
<th>被験者</th>
<th>システム未使用</th>
<th>システム使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験者A</td>
<td>8回</td>
<td>2回</td>
</tr>
<tr>
<td>被験者B</td>
<td>4回</td>
<td>3回</td>
</tr>
<tr>
<td>被験者C</td>
<td>6回</td>
<td>5回</td>
</tr>
<tr>
<td>被験者D</td>
<td>5回</td>
<td>2回</td>
</tr>
<tr>
<td>被験者E</td>
<td>9回</td>
<td>4回</td>
</tr>
<tr>
<td>被験者F</td>
<td>7回</td>
<td>8回</td>
</tr>
<tr>
<td>被験者G</td>
<td>8回</td>
<td>8回</td>
</tr>
<tr>
<td>被験者H</td>
<td>1回</td>
<td>3回</td>
</tr>
<tr>
<td>被験者I</td>
<td>4回</td>
<td>2回</td>
</tr>
<tr>
<td>被験者J</td>
<td>6回</td>
<td>1回</td>
</tr>
</tbody>
</table>

サラウンドモードの操作方法では一箇所平均で8秒、全体平均で約40秒かかった。個人平均の最小で被験者Cの31.1秒、最大で被験者Gの56.1秒であった。この差は被験者を発見できず何回も見渡した結果であり、また前の札から次の札が見つけるとき左右どちらかに動かす方向で見つける時間が違うという問題が新たに分かった。これは事故を防止するには時間がかかり過ぎており、他の方法を検討する必要がある。

一方、バードビューモードでは4名中7名の接触回数が減少している。残りの3名中2名はシステム使用時、未使用時ともにあまり差は見られず、電動車椅子の操作方法の不慣れさが原因と推測される。また使用した結果、接触回数が増えた被験者Hはシステム未使用時の接触回数が1回と他の被験者と比べてあまりにも少なく、システム使用時も3回と平均よりも少ないため結果としてシステム使用
時の方方が多かったものの操作の誤りと推測されるため、このモードは車輪周辺の事故防止に有効であるといえり。

6. 両モードの統合
サラウンドモード、パッドビューモードの二つのモードがあるが、現在は元のスイッチで切り替えを行っている。今後の展望として、全方位カメラ機能をより高い解像度、全方位レンズを自由曲線レンズに変更、魚眼カメラ機能をカメラ3台に合わせたタンクミディレイの縮小を行い、両のモードを統一することを目指す。以下の図はインターフェースのイメージ図である（図10）。

図10 統合イメージ

障害物や接近物がある場合警告を中央下のように表示する。接近物が電動車椅子に近づいてきた場合左下のように警告を出し、中央に接近物の方向の画像をサラウンドモードで取得し表示する。物体の検知方法としてレーザー式測距センサーを用いる予定である。

7. まとめ
本研究では電動車椅子使用者が周辺情報を受け、事故の防止を行うインターフェースの実装を行った。このインターフェースには二種類のモードがあり、高い視点の視覚情報を提供し、手を使わずに操作を行うことができるモードをサラウンドモード、左右側面、背後死角を無くすため電動車椅子に魚眼カメラを設置し、対面図を合成表示するモードをパッドビューモードとした。両モードの評価実験結果として、サラウンドモードは操作方法の検討をする必要があり、パッドビューモードは接触回数が減少しており事故防止に有効であるといえる。今後は両モードの統合実用を目指していく。

謝辞
今回の研究をするにあたり、多大なるご指導賜りまし
た石川孝先生に深く感謝の意を表すとともに、厚くお礼を申し上げます。本研究に関わっていた藤田研究室の方々に感謝いたします。

参考文献
[1]警察庁交通局 "車いすの安全利用に関するマニュアルについて"
http://www.npa.go.jp/koutsuu/kikaku/12/teiki.htm
[3]トヨタ "インテリジェントパーキングシステム"
http://www2.toyota.co.jp/jp/tech/safety/technologyies/parking/
[4]日産 "アラウンドビューモーター"
http://www.nissan-global.com/JP/TECHNOLOGY/INTRODUCTION/DETAILS/AVM/
[5]ボンダイ "マルチビューカメラシステム"
[8]昼笠雅俊，今田啓太，堀越大輔，小野里大志，田村仁 "電動車椅子の周辺把握システム" 第73回情報処理学会全国大会講演論文集（分冊4）, pp.131-132, 2011。