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1 Introduction

In 1997, Goldreich, Goldwasser and Halevil proposed a pub-
lic key cryptosystem using the closest vector problem (CVP) [1].
We call this cryptosystem the GGH cryptosystem. It is a notable
cryptosystem based on the complexity of lattices. However, its
large key size is a bottleneck for practical use [2]. Then, several
cryptosystems have been proposed to reduce the key size of the
GGH cryptosystem. Micciancio introduced the Hermite normal
form for the public key, and proposed a new encryption method in
2001 [3]. Paeng, Jung and Ha proposed a cryptosystem, we call it
the PJH cryptosystem, by introducing a representation of a poly-
nomial ring in 2003 [4]. Although the GGH cryptosystem requires
the secret and public keys withO(n2) to encrypt a message with
O(n), the key sizes are onlyO(n) in the PJH cryptosystem. Fur-
thermore, the processing speed of the PJH cryptosystem is quicker
than that of the GGH cryptosystem. However, Han et al. proposed
a key recovery attack against the PJH cryptosystem using a special
structure of a transformation matrix in the PJH cryptosystem [5].
According to the Han’s attack, they succeeded to recover secret
keys withn = 1001 on a single PC. As a result, the Han’s attack
ruins the practicality of the PJH cryptosystem. Hanawa, Kunihiro
and Ohta improved the PJH cryptosystem by changing the gener-
ation of the transformation matrix without compromising the key
size withO(n) [6]. We call this cryptosystem the HKO cryptosys-
tem. However, since the Euclidean norm of the public key is very
large, the total amount of memory required for storing the key is
too large. Furthermore, it is difficult to decrypt because of the large
Euclidean norm of the ciphertext.

In this paper, we propose a diffusion matrix to be operated for
the transformation matrix in the PJH cryptosystem. The proposed
diffusion matrix excludes the special structure of the transforma-
tion matrix, and hence, the Han’s attack is not applicable in the
proposed cryptosystem. Moreover, the Euclidean norms of the
public key and the ciphertext are about as large as that of the PJH
cryptosystem. The advantage of the proposed cryptosystem is dis-
cussed under the consideration of possible lattice attacks. Then,
our proposed cryptosystem is useful in a practical environment.

2 Lattice

In this paper, we only care about integral lattices of full rank.
LetB = (b1, . . . , bn)T be a non-singularn× n integral matrix. The
latticeL(B) spanned byB is defined as follows:

L(B) = L((b1, · · · , bn)
T) =

 n∑
i=1

xib
T
i : xi ∈ Z

 .
The non-singular matrixB is called a lattice basis, and the deter-
minant ofL(B) is invariable. Namely, if a lattice basisB has the
same determinant as the other basisB′. Their lattices spanned by
B andB′ are the coincident with each other. Then there exists
T ∈ Zn×n such that| det(T )| = 1 andTB = B′.

The CVP is a hard computational problem shown to be NP-hard.
Given a lattice basisB ∈ Zn×n and a target vectort ∈ Zn, the CVP
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asks to find the lattice point closest tot. The SVP is a hard compu-
tational problem closely related to the CVP. Given a lattice basis
B ∈ Zn×n, the SVP asks to find the shortest non-zero lattice vector.
In Euclidean norm, it is shown to be NP-hard for randomized re-
ductions. However, a relatively short vector is introduced in poly-
nomial time by using the lattice reduction algorithm, for example
the LLL algorithm [7]. In most cases, one cannot prove that the
lattice vectorv is an exact shortest vector. Thus, one guesses the
Euclidean norm of the shortest vector by using Gaussian heuris-
tic [5] as follows:

σ(L) ≈
√

n
2πe

det(B)
1
n .

If the Euclidean norm of the given vector is less thanσ(L), one
may expect that this vector is the shortest vector. In practical, the
largerσ(L)/ ∥ v ∥ is, the easier one can findv by using the lattice
reduction algorithm, where∥ v ∥ is the Euclidean norm of a vector
v. We call this ratioσ(L)/ ∥ v ∥ an “expected gap” of the lattice
L. Especially, if the expected gap is smaller than 1/

√
2πe, the

vectorv is not the shortest vector by the Minkowski’s theorem.
The lattice reduction algorithm is useful to solve the CVP. Given

a lattice basisB ∈ Zn×n and a target vectort ∈ Zn, one generates a
new lattice basisB′ ∈ Zn+1×n+1 as follows:

B′ =

B 0n

t 1

 ,
where0n is a column vector of dimensionn whose entries are all
0. Then, a vector (−x,1)B′ = (t − xB,1) is contained inL(B′).
The CVP asks to find the lattice vectorxB closest to the target
t. Then, ift − xB is the shortest non-zero lattice vector in lattice
L(B′), one can regard the CVP as the SVP and solve it by using
the lattice reduction algorithm.

3 GGH series

GGH series are the variants of public key cryptosystems pro-
posed in [1] based on lattice problems; for example the SVP or the
CVP. In this section, we first describe the original GGH cryptosys-
tem, and its variants the PJH cryptosystem and the HKO cryptosys-
tem. Next, we describe their Euclidean norms of the public key and
the ciphertext. Finally, we describe that the Euclidean norm of the
ciphertext makes it difficult to decrypt in the HKO cryptosystem.
3.1 The GGH cryptosystem

The GGH cryptosystem uses a non-singular matrixR ∈ Zn×n as
a secret key. First,R is generated as follows:

R = kI +R′,

wherekI( k =
√

nl ) is an orthogonal matrix and a matrixR′

is uniformly distributed in{−l, . . . , l}n×n. Next, a public keyB is
generated as follows:

B = TR,

whereT is a transformation matrix and| det(T )| = 1. In this case,
their lattices spanned by the secret keyR and the public keyB
are the coincident with each other. Micciancio proposed another
method of generating the public key from the Hermite normal form
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of the secret key. Its public key size is smaller than that of the GGH
cryptosystem.

One chooses a lattice vector frommB, where the vectorm is
chosen at random fromZn. The ciphertextc ∈ Zn is calculated by

c =mB + e,

wheree is an error vector and its coefficients are contained in
{−σ,σ}. In GGH series, there are two methods to encode a mes-
sage. In a first method, a message is encoded inm which is used
for choice of a lattice vector. On the other hand, another method
encodes a message ine which is used for an error vector.

The ciphertext is decrypted by using the Babai’s rounding algo-
rithm [8] as follows:

⌊cR−1⌉T −1 = ⌊(mTR + e)R−1⌉T −1

= ⌊mT + eR−1⌉T −1 (1)

=m + ⌊eR−1⌉T −1.

From Eq. (1), it is noticed that the decryption works well only
when ⌊eR−1⌉ = 0. This holds with high probability sinceR−1

consists of very small values. An alternative to the Babai’s round-
ing algorithm is the nearest plane algorithm [8]. This algorithm
solves the CVP by using the Gram-Schmidt basis of the secret key
and derives the lattice vectormB.
3.2 The PJH cryptosystem

The PJH cryptosystem is a special case of the GGH cryptosys-
tem. It introduces a representation of a polynomial ring, and its
key size is reduced from that of the GGH cryptosystem. They use
a polynomial ringR = Z[x]/(xN − 1). Note that the multiplication
f · g ∈ R of f andg is computed by the convolution product of
them, that is,

h = f Φ(g),

whereΦ(g) is an (N × N) circulant matrix of vectorg ∈ ZN. So
arithmetic operations of the PJH cryptosystem are defined under
this polynomial ring.

The secret key of the PJH cryptosystem is{f1,f2,h1,h2 ∈ R},
which have the following properties:
• f1(x) = αN−1xN−1 + · · · + α0 andf2(x) = βN−1xN−1 + · · · + β0,

where|αi0|, |β j0| ≈
√

2N for somei0, j0 and the other coeffi-
cients are contained in{−1,0, 1}.

• The coefficients ofh1 andh2 are contained in{−1, 0,1}.
Then, the secret basisR is given as follows:

R =

Φ(f1) Φ(h2)
Φ(h1) Φ(f2)

 .
The public basisB is the product of the transformation matrix
T and the secret basisR. To represent the public basisB by a
circulant matrix, the transformation matrixT is represented by a
circulant matrix as follows:

T =

Φ(g) Φ(Q)
pI Φ(gp)

 .
In order to generate the transformation matrix, one first chooses
g ∈ R such that the coefficients ofg are contained in (−p/2, p/2],
wherep is a random positive integer. Then,g can be considered
as an element of a ringZp[x]/(xN − 1), and one takesg which is
invertible in this ring. Next, one calculatesgp such thatg · gp =

1 ∈ Zp[x]/(xN − 1). Then, there existsQ such thatg · gp − pQ =
1 ∈ R. Finally, from det(T ) = det(Φ(g · gp − pQ)) = det(I) = 1,
the determinant of this transformation matrix is 1. Therefore one
generates the public basisB as follows:

B = TR =

Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

 ,

whereP1,P2,P3,P4 ∈ R are represented by

P1 = f1 · g + h1 ·Q (2)

P2 = pf1 + h1 · gp (3)

P3 = h2 · g + f2 ·Q (4)

P4 = ph2 + f2 · gp. (5)

The secret key of the PJH cryptosystem is the 4 polynomi-
als f1,f2,h1 and h2, and the public key is the 4 polynomials
P1,P2,P3 andP4. Moreover, the 3 polynomialsg,gp andQ are
secret parameters, but even if the positive integerp is not a se-
cret parameter, it does not seem to be a critical parameter for the
security.

Let m = (m1,m2) ∈ R2 be a message. Then, the ciphertext
c = (c1, c2) is calculated by

(c1, c2) = (m1,m2)

Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

 + (e1,e2)

= (m1 ·P1 +m2 · P2 + e1, m1 · P3 +m2 · P4 + e2),

wheree = (e1,e2) is an error vector and its coefficients are con-
tained in {−1/2, 1/2}. In the PJH cryptosystem, the decryption
works by the same reason as the GGH cryptosystem. It requires
the secret and public keys with onlyO(n) to encrypt a message
with O(n). Furthermore, its processing speed is quicker than that
of the GGH cryptosystem.

Although the PJH cryptosystem improved the practicality of the
GGH cryptosystem, an efficient key recovery attack has been pro-
posed by Han et al [5]. In the attack, they introduced the following
equation under a ringR:

g ·P2 = pf1 · g + h1 · gp · g
= pf1 · g + h1 · (1+ pQ)

= p(f1 · g + h1 ·Q) + h1

= pP1 + h1.

Then, they generate the lattice spanned by the following basisB′:

B′ =

Φ(P2) 0n

P1 1

 ,
where this basis is (N + 1)× (N + 1) matrix, and a short vector

v = (g,−p)B′ = (h1,−p)

is contained inL(B′). If they get this short vectorv by executing
the lattice reduction algorithm againstB′, they can recover the
transformation matrix and the secret key.
3.3 The HKO cryptosystem

Hanawa, Kunihiro and Ohta proposed a new method of gener-
ating the transformation matrix. The Han’s attack uses a special
structure of the transformation matrix in the PJH cryptosystem,
in particular the block matrixpI. Instead of the transformation
matrix of the PJH cryptosystem, they generate the transformation
matrix from 4 polynomialsg1,g2,g3 andg4 as follows:

T =

Φ(g1) Φ(g3)
Φ(g2) Φ(g4)

 .
In order to generate the transformation matrix, one first chooses
2 polynomialsa and b such that the coefficients of a and b
are contained in{−1, 0, 1}. Next, one calculates the determi-
nantsRa and Rb for Φ(a) andΦ(b), respectively. Then, there
exist s, t, s′, t′ ∈ Z[x] such thata · s + (xN − 1) · t = Ra and
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Fig.1 Experimental results about the Euclidean norm ofmT .

b · s′ + (xN − 1) · t′ = Rb. If gcd(Ra,Rb) = 1, the Extended
Euclidean Algorithm returnsu, v ∈ Z such thatRau + Rbv = 1.
Finally, one introduces (ua) · s + (vb) · s′ = 1 ∈ R, then let
g1 = ua,g2 = −vb,g3 = s′ andg4 = s, respectively.

Although the determinant of this transformation matrix is 1, the
Euclidean norms of 4 polynomials are much larger than that of the
PJH cryptosystem because of the following reason. Each coeffi-
cient of 4 polynomials is bounded by the determinantsRa andRb.
The size ofRa andRb areO(∥ a ∥N) andO(∥ b ∥N), respectively.
Then, the public key size of the HKO cryptosystem is much larger
than that of the PJH cryptosystem. For example, in the PJH cryp-
tosystem withN = 100 (this dimension is 200), the public key
size is about 0.85KB, on the other hand, in the HKO cryptosystem
with N = 100 (this dimension is 200), that is 12KB. Moreover,
in the PJH and HKO cryptosystem, the ciphertext size almost be-
comes equal with the public key size. The ciphertext size of the
HKO cryptosystem is serious problem, because it exponentially
increased with the dimension.

4 Difficulty of decryption

In Sect. 3.1, there are two methods to encode a message; one
encodes it inm and the other ine. In both methods, all opera-
tions are mathematically defined under a ringR. However, in a
real environment, it is difficult for a computer to simulate opera-
tions because of the limitation of its precision. A rounding error at
an operation may critically changes the results of decryption. For
example, if the decryption is executed by using the Babai’s round-
ing algorithm, the inverse matrix of the secret basisR is calculated
and may have a tiny errorR′ as follows:

R ×R−1 = I +R′.

If the Euclidean norm of the ciphertext is large and the inverse ma-
trix has a tiny errorR′, the decryption in Eq. (1) must be replaced
as follows:

⌊cR−1⌉T −1 = ⌊(mTR + e)R−1⌉T −1

= ⌊mT +mTR′ + eR−1⌉T −1 (6)

=m + ⌊mTR′ + eR−1⌉T −1.

From Eq. (6), it is noticed that the decryption fails if the Euclidean
norm ofmT is larger than expected, where the Euclidean norm
of mT is the maximum Euclidean norm of the column vectors of
mT .

Figure 1 shows experimental results about the Euclidean norm
of mT in the PJH and the HKO cryptosystems with dimensions

10-200. In the HKO cryptosystem withN = 100 and 200 dimen-
sions, the Euclidean norm ofmT becomes almost 2270. Therefore,
the error of the inverse matrix must be smaller than 2−270, because
the decryption fails if⌊mTR′⌉ , 0. However, the calculation
of the inverse matrix with high accuracy requires many computer
resources. Moreover, the required precision is exponentially in-
creased with the dimension.

5 The proposed method

The HKO cryptosystem can immunize the Han’s attack, but the
Euclidean norm of the ciphertext is much larger than that of the
PJH cryptosystem. In this section, we propose a diffusion matrix
which excludes the special structure of the transformation matrix
of the PJH cryptosystem. The proposed cryptosystem can immu-
nize the Han’s attack, and the Euclidean norms of the public key
and the ciphertext are about as large as that of the PJH cryptosys-
tem.
5.1 The proposed transformation marix

To immunize the Han’s attack, a transformation matrixT is
given as follows:

T =

 Φ(g) Φ(Q)
Φ(p+A · g) Φ(gp +A ·Q)

 .
In order to generate the transformation matrix, the 3 polynomials
g,gp andQ and a positive integerp is generated similar to that
of the PJH cryptosystem. However, the coefficients ofg are con-
tained in [−ℓ, ℓ] not (−p/2, p/2] (ℓ ≤ ⌊p/2⌋), and the reason is
discussed later. Next, a polynomialA is generated at random in a
ring R. Finally, p+A · g ∈ R andgp +A ·Q ∈ R are generated
to immunize the Han’s attack, andA is secret parameter and is
disused after the abovementioned operations.

The determinant of the proposed transformation matrix is 1 be-
cause Φ(g) Φ(Q)
Φ(p+A · g) Φ(gp +A ·Q)

 =  I 0

Φ(A) I

 Φ(g) Φ(Q)
pI Φ(gp)


= A′Tp jh,

whereA′ is a lower triangular matrix whose determinant is 1 and
Tp jh is a transformation matrix of the PJH cryptosystem. We call
this operation the diffusion of the transformation matrix and theA′

is the diffusion matrix. A public basisB is calculated as follows:

B = TR =

Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

 ,
whereP1,P2,P3,P4 ∈ R are expressed as

P1 = P1p jh

P2 = P2p jh +A · P1p jh

P3 = P3p jh

P4 = P4p jh +A · P3p jh,

where{P1p jh,P2p jh,P3p jh,P4p jh} is the public key of the PJH cryp-
tosystem. It is noticed from the above public basisB that the Eu-
clidean norm of the ciphertext is almost equal to that of the PJH
cryptosystem.

The Han’s attack decreases the dimension of the lattice prob-
lem by using the block matrixpI. However, the proposed method
covers the block matrixpI with A · g. Then, the Han’s attack is
expressed as follows:

g · P2 = g · (P2p jh +A · P1p jh)

= pP1p jh + h1 + g ·A ·P1p jh

= (p+ g ·A) · P1 + h1,
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Table 1 The experimental result of expected gap

ℓ = p/2 ℓ = p/
√

N ℓ = p/N

dimension target lattice expected gap success/trial expected gap success/trial expected gap success/trial
(P12, v2) 2.020990949 9/10 0.427815336 0/10 0.073482035 0/10

100 (P34, v4) 1.783193973 9/10 0.40692057 0/10 0.066239996 0/10
(P12, v2) 2.612034438 10/10 0.608524053 0/10 0.069415363 0/10

140 (P34, v4) 2.172856764 10/10 0.54451621 0/10 0.061149658 0/10
(P12, v2) 3.183394326 10/10 0.671688273 0/10 0.070966117 0/10

180 (P34, v4) 3.118077292 10/10 0.6032438 0/10 0.066959833 0/10
(P12, v2) 4.056582215 10/10 0.758704508 0/10 0.067518278 0/10

220 (P34, v4) 3.890429631 10/10 0.717111322 0/10 0.064699121 0/10

wherep + g ·A is a vector under a ringR not a positive integer.
Then, an adversary cannot decrease the dimension of the lattice
problem by the Han’s attack.
5.2 Lattice attacks against the proposed cryptosystem

The proposed cryptosystem can immunize the Han’s attack.
However if an adversary can recover the public key of the PJH
cryptosystem from that of the proposed cryptosystem, one can ex-
ecute the Han’s attack after the recovery of the public key of the
PJH cryptosystem. Then, we consider the method to recover the
public key of the PJH cryptosystem from that of the proposed cryp-
tosystem.

In order to recover the public key of the PJH cryptosystem, one
must calculate the following equation, I 0

Φ(−A) I

 Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

 = Φ(P1p jh) Φ(P3p jh)
Φ(P2p jh) Φ(P4p jh)

 ,
then,

−AΦ(P1) + P2 = P2p jh (7)

−AΦ(P3) + P4 = P4p jh, (8)

where an adversary can know onlyP1,P2,P3 andP4. If A is
derived from Eq. (7) and Eq. (8), the public key of the PJH cryp-
tosystem is recovered. However, it is difficult to solve these equa-
tions. Assuming that these problems are the SVP of the following
lattice bases,

P12 =

Φ(P1) 0n

P2 1

 or P34 =

Φ(P3) 0n

P4 1

 ,
where these bases are (N + 1) × (N + 1) matrix, and lattice vec-
torsv2 = (P2p jh, 1) andv4 = (P4p jh,1) are contained inL(P12)
andL(P34), respectively. If the lattice reduction algorithm derives
v2 or v4, the proposed cryptosystem is not secure. To confirm it,
we implemented this lattice attack using the NTL library [9], and
evaluated the resistance to this lattice attack from the perspective
of the expected gap. We used the BKZFP function whose block
size is 15 in the NTL library.

We experimented by 3 parameters,ℓ = p/2, ℓ = p/
√

N and
ℓ = p/N. Generally, the smaller coefficients ofg are, the smaller
that ofP1 andP3 becomes from Eq. (2) and Eq. (4), but that of
P2p jh andP4p jh do not become small from Eq. (3) and Eq. (5).
Then, the smaller theℓ is, the more difficult these lattice problems
become because the determinants of these lattices grow smaller.
In the experiment,p takes a random 10-bit integer. Table 1 shows
these experimental results.

We can recover all the public keys of the PJH cryptosystem from
that of the proposed cryptosystem whenℓ = p/2. However we
cannot recover all those ifℓ ≤ p/

√
N. Moreover, from the ex-

pected gaps whenℓ = p/N, the lattice vectorsv2 andv4 are not

the shortest non-zero lattice vectors in latticesL(P12) andL(P34)
from the Minkowski’s theorem. In the proposed cryptosystem, co-
efficients ofg takes are smaller than that of the PJH cryptosystem
on average. This information may be helpful to attack. However,
if p takes a large positive integer, this problem can be disregarded.

6 Conclusion

In this paper, we improved the PJH cryptosystem by diffusing
the transformation matrix, and it can immunize the Han’s attack.
Moreover, the Euclidean norm of the ciphertext is about as large
as that of the PJH cryptosystem. We showed that if the coefficients
of g is selected appropriately, it was difficult to recover the public
key of the PJH cryptosystem from that of the proposed cryptosys-
tem. On the other hand, we experimentally derive the coefficients
of g in this paper. The theoretical analysis about the appropriate
coefficients ofg is left for our future work.

The security of the proposed cryptosystem is not proved. How-
ever, the security of the proposed cryptosystem may be an equal to
that of the PJH cryptosystem secure against the Han’s attack.
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