K-048

人体測定データを用いた着装シミュレーション

Wearing simulation that uses human body measurement data

大野 峻介† 中内 智大‡ 永瀬 宏‡ Shunsuke Oono Tomohiro Nakauchi Hiroshi Nagase

1. はじめに

現在,人為的に作成した 3D ボディデータに服を着せ付ける技術は存在する[1][2]. しかし,実在する人物のそのままの 3D ボディデータを使用して行うことは少なく,大抵の場合人体スキャナで計測したデータをもとに人為的データを作成したり,3DCG ソフト内の既存の人体データを用いたりしている.

そこで本研究では、実在する人物への着装シミュレーションをコンピュータ上で実現する。このため、人体の3次元形状を光学式非接触型の人体スキャナで計測し、その得られたデータに着せ付けを行った。人為的データと違い、実在する人物のボディデータは計測の際に欠落部が発生してしまうため補完する必要がある。また、事例が少なく、人体スキャナでボディデータを計測するためのノウハウがあまりないため、それらの提案を行う。

2. 測定したボディデータへの着装

2.1 着装シミュレーションの流れ

着装シミュレーションを行うにあたり、人体データの計測を浜松ホトニクス社のBodyLineScanner、専用ボディデータの作成と着装シミュレーションを株式会社テクノアのBodyOrderTool、i-Designerを用いて行った.

BodyLineScanner で計測したデータでは i-Designer で読み込むことができないため、専用ボディデータの作成を図 1 のように行う.

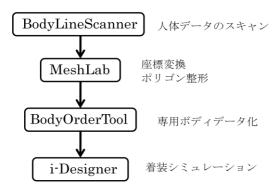


図1 着装シミュレーションの流れ

2.2 人体データの計測

BodyLineScanner で人体を計測する. ポリゴン整形と座標変換を MeshLab で行えるようにポリゴン生成し, obj 形式で保存をする. 計測する際に留意することがあるが, それは後述する. 計測した外形を図 2 に示す.

図 2 BodyLineScanner で計測した外形

2.3 ポリゴン整形

BodyOrderTool ではフェース数が 10000 以下でないと読み込むことができないため、MeshLab を用いてポリゴン整形を行う.また,人体データの向きが正面を向いていなく,スケールも大きすぎるため座標変換と縮小を行う. 手順を以下に示す.

- (1) フェース数を 10000 以下まで減らす
- (2) 小さな穴を埋める
- (3) メッシュのクリーニング
- (4) Z座標の変更
- (5) スケールの縮小

以上が完了したら obj 形式で保存する. これにより, BodyOrderTool で読み込めるようになった.

しかし、ポリゴン整形の手順は、どの人体データにも可能というわけではなく、まれにエラーが起きてしまうため検討が必要である.

2.4 専用ボディデータ作成

3DfitView で読み込めるように、BodyOrderTool を用いて 測定したボディデータの基準点・基準線を設定する. 設定 する前後のデータを図 3 に示す. 図 3 の右図のようになったら bbd 形式で保存する.

以上により i-Designer で読み込めるボディデータが完成した.

[†] 金沢工業大学大学院 工学研究科

[‡] 金沢工業大学 情報フロンティア学部 メディア情報学科

設定する前後のボディデータ 図 3

2.5 着装シミュレーション

作成したボディデータに既存の型紙データを着装する. 左は人為的に作られたマネキンデータ. 右は計測した人体 データである. 着装後のデータを図4に示す.

このシミュレーションの段階では、着せ付ける服のサイ ズの定義を決めていないため, 人体データによっては型紙 のサイズの変更する作業も必要となる.

マネキンデータ

人体データ

図4 着装後のデータ

3. 人体データ計測時の留意点

着装シミュレーションを円滑に行うために、人体データ を計測する際に留意することが2つある.

1 つは、腕を体から離すことである. これは、計測した ボディデータの体と腕が一体化してしまうことを防ぐ役割 もあるが、BodyOrderTool で基準線を設定する際に作業が 行いやすい利点もある. また, 腕と体が近くにある状態で 着せ付けを行った場合, 腕も体の一部と判断されてしまい, 服の袖から腕が出てこない結果になってしまう.

もう1つは、頭頂点を体の中心にあることを確認するこ とである. 計測時に体や顔が動いてしまった場合に頭頂点 が中心からずれる場合がある. そのときは、図5の左図よ うに体の中心線が少しずれてしまうため、基準線の設定が できない. この基準線の設定ができていないと、シミュレ ーションを行う際に、ボディデータが正しく表示されなく なってしまったり、服を着せ付けることができなくなった りしてしまうため、非常に重要なものとなる.

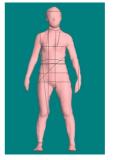


図5 基準線の比較

しかし、上記2つを実行しても設定できない場合がある ため、これら以外にも要因はまだあると考えられる. 今後 も姿勢などの検証を行い、設定できない原因を追求する必 要がある

4. 人体データの有用性

人為的な人体データの場合、滑らかな形状のデータが多 く、身体的特徴を待っているものは少ない、実在する人物 のそのままの 3D ボディデータを使用することで、その人 物の身体的特徴にあった着せ付けを行うことができる. こ れを服のオーダーメイドの際、採寸の代わりに利用するこ とで、採寸時にかかる時間や人件費を削減することができ る. これにより、低コストでのオーダーメイドが可能にな ると考えた.

5. おわりに

本研究では、実在する人物のそのままの 3D ボディデー タに着装シミュレーションを行った. また, 人体データ計 測時において,後のシミュレーションを円滑に行う方法を 提案した. しかし、それぞれの手法において不十分な部分 もあり、手順通りに進めても失敗する場合がまだまだある. 今後は、それぞれの手法の改善と簡略化を行う. また、人 体データに間接の定義を行い、さまざまな姿勢をとったと きの服のゆとりや圧力を調べ、人体データにあった型紙デ ータを作成できる方法を検討する予定である.

参考文献

- [1] N.Magnenat-Thalmann, H.Seo, and F.Cordier, Automatic modeling of virtual humans and body clothing, pp.2-10, IEEE Computer Society Press, 2003.
- [2] Suzuki Tohru, Nagase Hiroshi, Yamamoto Toshiyuki. A study for modeling and animation of a human with bone structure and clothes. 電子情報通信学会技術研究報 告.IE,画像工学, pp.105-108,2009