J-019

テレビ視聴者の興味状熊推定に向けた顔表情変化度測定 Estimating Facial Expression Intensity for Inferring Status of TV Viewer's Interest

奥田 誠‡ 苗村 昌秀十 藤井 真人† Makoto Okuda Masahide Naemura Mahito Fujii

1. まえがき

近年, インターネットの普及に伴い, 視聴したテレビ 番組についての情報(出演者の紹介など)や、過去に放送さ れたテレビ番組を,通信を介して取得できるようになっ た. しかし、インターネット上の情報は膨大であり、必 要とするコンテンツを, 誰もが容易に取得できるわけで はない.

このような背景の中、筆者らは、番組シーン毎に視聴 者の興味状態を推定することで,各人の趣味・嗜好に応 じたコンテンツ推薦を実現しようとしている.

視聴者が、笑ったり、驚いたりして、顔表情を変化さ せたときには、番組への興味度が高いと考えられる.本 論文では、顔表情の変化度合を測定する手法について提 案する.

顔表情変化度合測定システム

2.1 開発方針

家庭環境で, 視聴者の興味状態を推定することを想定 すると、視聴者に接触センサを取り付けることは、現実 的ではない、そこで、図1に示すように、テレビに単眼カ メラを設置し,画像処理を行って視聴者の顔表情変化度 を測定する.

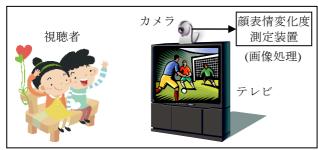


図1 視聴者の顔表情変化度測定イメージ

顔表情変化度の測定は、事前に、さまざまな人の顔表 情を機械学習しておくことにより、視聴者が、顔表情の 登録を行うなどの煩わしい作業を行う必要がないように する.

これまで、Littlewort[1]らが、顔画像を Support Vector Machines(SVM)[2]により表情分類し、画像特徴量と SVM 境界面との距離を表情変化の大きさとすることを提案し ている. 筆者らも, これに倣うが, システムを家庭環境 で用いることを勘案し、照明変化にロバストなどの特徴 をもつ画像特徴量を用いる.

2.2 システム

2.2.1 学習データ

†日本放送協会, Japan Broadcasting Corporation

‡東京大学, The University of Tokyo

顔表情の学習には、Extended Cohn-Kanade Dataset[3]を用 いた.

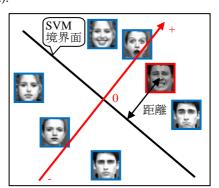
佐藤 洋一‡

Yoichi Sato

Extended Cohn-Kanade Dataset には、123 人の人物が、ニ ュートラルな状態から、徐々にピーク方向へ向かって顔 表情を変化させた 593 の画像シーケンスが存在する. これ らのうち, Anger, Disgust, Fear, Happiness, Sadness, Surprise の 6表情がラベリングされた 309 シーケンスにつ いて、シーケンスの最初の画像(ニュートラルな表情)と最 後の画像(ピーク表情)を学習データとした.

2.2.2 顔表情の学習

顔表情の学習手順を,以下に示す.


- 1. すべての学習画像について、顔領域の切り出し[4]とサ イズの正規化を行った後,画像特徴量 Bag-of-Keypoints[5]を計算する.
- 2. 計算した画像特徴量 Bag-of-Keypoints に基づき, ニュー トラル表情とピーク表情を分類できるよう SVM による 機械学習を行う.

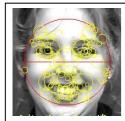
Bag-of-Keypoints は,近年,一般物体認識で活発に利用 されている画像特徴量であるが、Liら[6]が、これを用い ることにより, 顔画像を Anger, Disgust, Fear, Happiness, Sadness, Surprise の 6 表情へ高精度に分類できることを発 表している. このことから, Bag-of-Keypoints は, 顔表情 を識別するための情報を多く含んでいると考えられ、さ らに、照明変化にロバストなどの利点をもつため、使用 することにした.

2.2.3 顔表情変化度の測定

顔表情変化度の測定手順を,以下に示す.

- 1. 測定する画像について、顔領域の切り出しとサイズの 正規化を行った後,画像特徴量 Bag-of-Keypoints を計算 する.
- 2. 計算した Bag-of-Keypoints について, 学習により得た SVM 境界面からの距離を計算し、ピーク表情側を正、 ニュートラル表情側を負とした値を顔表情変化度とす る(図2).

※ 青枠画像: 学習データ, 赤枠画像: 測定データ


図2 顔表情変化度の計算

3. 評価実験

3.1 識別率

提案した顔表情変化度測定手法の妥当性を測る1つの目安として、まず、学習した SVM がニュートラル表情とピーク表情をどれだけ識別できるかをテストした.

顔領域は、半径 160 ピクセルの円に正規化した(図 3). Bag-of-Keypoints は、位置情報を導入するため、顔領域の上半分と下半分で別々に計算し(それぞれ 350 次元ベクトル、250 次元ベクトル), 各ベクトルを繋いで 1 つの Bag-of-Keypoints(600 次元ベクトル)とした.

※ 赤丸: 顔領域

※ 黄丸: Bag-of-Keypoints を計算するために求めた SURF[7]キーポイント. SURF 記述子(特徴量)は, 照明変化にロバスト, 回転, スケール変化に不変という特徴をもつ.

図3 顔領域の処理

Extended Cohn-Kanade Dataset のニュートラル表情 309 画像, ピーク表情 309 画像について, Leave-one-out 法によりテストを行った結果, 識別率は 86.2% であった.

3.2 顔表情変化度測定テスト

Extended Cohn-Kanade dataset の各顔表情変化シーケンス について、顔表情変化度の測定を行った.

図 4 は、被写体 S052, S055, S074, S111, S113 の Surprise シーケンスについて、顔表情変化度を測定した結果である。図 5 は、被写体 S055 の各表情シーケンスについて、顔表情変化度を測定した結果である。いずれも、テスト画像は、学習には用いていない。

図 4, 図 5 を見ると, 顔表情が変化する(画像番号が増加する)に従い, 顔表情変化度が増加する傾向にあり, 良好な結果が得られた.

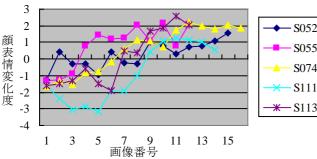


図 4 Surprise の顔表情変化度の推移

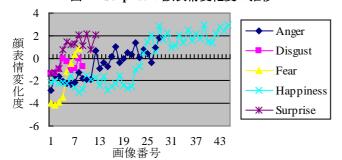
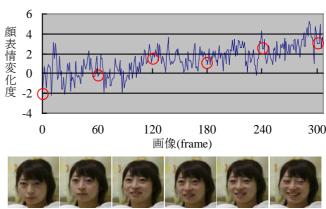



図 5 被写体 S055 の顔表情変化度の推移

実際の家庭内でもテレビ視聴者を撮影し、顔表情変化度を測定した.図6は、視聴者がニュートラルな状態から、徐々に表情を変化させていった約10秒間を切り出した結果である.

0 frame 60 frame 120 frame 180 frame 240 frame 300 frame

図 6 視聴者の顔表情変化度の推移

フレーム間の変化度の変動が激しく,課題も残るが, 学習データと異なる環境で撮影した画像でのテスト結果 であるにも関わらず,視聴者の顔表情変化に合わせ,顔 表情変化度が増加する傾向にあると言える.

解像度 720×480 の映像に対する処理速度は、約80ms/frame(CPU: Intel Xeon 3.20GHz, メモリ: 4GB, OS: Windows XP Professional)であった.

4. まとめ

テレビ視聴者の興味状態推定システム開発に向けて, 顔表情変化度測定手法を提案した.

顔表情データセットを用いた評価実験を行い、顔表情変化が大きくなると、顔表情変化度の計算結果も大きくなる傾向にあることを確認した。また、家庭環境でもテストを行い、同様の結果を得た.

今後,提案手法について,さらに詳細な評価実験を行い,システムの改善を図っていく予定である.

参考文献

- [1] G. Littlewort *et al.*: "Dynamics of facial expression extracted automatically from video", *IVC*, Vol. 24, No. 6, pp. 615-625 (2006)
- [2] C. Cortes *et al.*: "Support-Vector Networks", *ML*, Vol. 20, No. 3, pp. 273-297 (1995)
- [3] P. Lucey *et al.*: "The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression", *CVPR4HB*, pp. 94-101 (2010)
- [4] P. Viola *et al.*: "Robust Real-Time Face Detection", *IJCV*, Vol. 57, No. 2, pp. 137-154 (2004)
- [5] G. Csurka *et al.*: "Visual Categorization with Bags of Keypoints", *ECCV Workshop on SLCV*, pp. 1-22 (2004)
- [6] Z. Li et al.: "Facial Expression Recognition Using Facial-component-based Bag of Words and PHOG Descriptors", ITE, Vol. 64, No. 2, pp. 230-236 (2010)
- [7] H. Bay *et al.*: "SURF: Speeded Up Robust Features", *CVIU*, Vol. 110, No. 3, pp. 346-359 (2008)