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1．Introduction 

In model-based camera tracking, since edge does not have its 

descriptor, it is usually tracked locally with a weak prior 

knowledge and thus likely to be tracked incorrectly. Incorrectly 

tracked edges result in inaccurate and unstable camera tracking. 

One can say that this problem could be alleviated by using so-

called probabilistic methods [3, 7]. However, making edges 

tracked correctly will be more effective. In this regard, methods 

of using robust estimators [2, 8] or cooperatively tracking 

multiple visual cues (e.g. edges and feature points [5]) have been 

proposed. However, they are those that do something on a given 

(or unadjustable) edge map (extracted explicitly or implicitly) 

and without any information about the true correspondences (= 

hypotheses). Therefore, their performance is limited to some 

extent. If having the information about the true correspondences 

and enhancing the edge map (by suppressing the false 

hypotheses), it will be much easier to make edges tracked 

correctly. This paper presents such a method. The method trains 

the gradients of the true correspondences in the previous frames 

and improves a conventional edge detector to selectively detect 

edges that have similar gradients to the true correspondences in 

the current frame.  

A similar work was done by Wuest et al. [9]. However, they 

trained the pixel values (i.e. colors) of edges, in contrast to our 

approach of training the gradients of edges. In addition, they 

used the trained information to find the true hypotheses from the 

implicitly detected multiple hypotheses, in contrast to our 

approach of adjusting the thresholds of a conventional edge 

detector using the trained information to explicitly detect only 

the true hypotheses. 

2．Testbed System 

As a testbed, we use a linear and iterative model-based camera 

tracking system [5]. In the system, edges of the 3D scene model 

are tracked (= matched with their correspondences) as follows. 

First, the edges are tested if they are visible in the current camera 

view. Then, the visible edges are sampled with an equi-distance 

and the sampled edge points are projected onto the camera image 

plane. Next, strong image edges are detected from the current 

frame using the Canny operator in [4]. Then, the projected edge 

points are matched with the detected image edges closer to them. 

The camera pose is estimated by minimizing the weighted 

Euclidean distance from the projected edge points to their 

matches.  

Consequently, the accuracy and stability of the testbed system 

greatly depend on the edge detection results by the Canny 

operator. Therefore, to increase the accuracy and stability, a 

method for enhancing the edge detection results is explained in 

the next section. 

3．Proposed Method 

3.1  Modeling and Updating the Visual 
Properties of Edge 

An edge's visual property can be modeled as a mixture of N 

Gaussian distributions [6]. That is, the probability of observing 

the edge's visual property x at time t is 
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where Φ is the Gaussian probability density function. The weight 

wi represents a measure of what portion of data is taken into 

account by the i-th Gaussian. 

Given a new property value xt at time t, the mixture model is 

updated as follows. First, if there is a distribution k that is 

matched with xt, i.e. |xt – μk,t-1| < 2.5σk,t-1, the parameters of the 

distribution are updated as follows [6]. 
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where λ is the learning rate and ρ = λΦ(xt, μk,t-1, σk,t-1). Second, if 

there is no such a matched distribution, the mean of the least 

probable distribution j is replaced by xt, its standard deviation is 

initialized with a high value (σ0), and its weight is initialized with 

a low value (w0). Finally, the weight of the other distributions 

that are neither matched with xt nor the least probable 

distribution is updated as follows. 
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Their means and standard deviations remain the same. 

3.2 Adaptive Edge Detection 
A gray-scaled camera image is divided into Bw × Bh blocks1. 

In each block, the gradients (g = |gx| + |gy| where gx and gy are 

computed by applying the horizontal and vertical Sobel operators 

to the gray-scaled camera image, respectively.) of the 

correspondences (= true hypotheses) of correctly tracked edges2 

                                                 
1 Since the visual properties of adjacent edges are similar, the 

process can be done blockwise. 
2 In this paper, it is determined that edges were correctly tracked 
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are modeled and updated by a mixture of N Gaussian 

distributions as explained in Sect. 3.1. The parameter λ in Eqs. 

(2) and (5) is controlled by the accuracy of the pose estimation, 

i.e. λ = λ0/(erre+1) where erre is the reprojection error of edges. 

Then, among the N distributions, the mean (μ) and standard 

deviation (σ) of a distribution that has w larger than a constant 

Wmin and also has a largest w/σ are used to determine the 

thresholds of the Canny operator1 as follows. If (μ - 2.5σ) > μ/2, 

.2/,5.2   thth lh                       (6) 

else, 

.5.2,2/   thth lh                       (7) 

And the edges, of which g is larger than μ + 2.5σ, are removed. 

This indicates to adjust the thresholds so as to detect only the 

edges that have similar gradients to the true hypotheses and 

suppress the others (i.e. false hypotheses having the weaker or 

stronger gradients) in the next frames. 

If a block does not include correctly tracked edges, its 

Gaussian mixture model is reset. If there is no distribution having 

w larger than Wmin, the thresholds are initialized to pre-defined 

values.  

Note that, by more precisely dividing the image using a 

sophisticated segmentation method, by separately computing the 

gradients in each color channel, by training the gradients of all 

pixels (true hypotheses, false hypotheses, and pixels that are not 

edges), or by using the multiple distributions having large w/σ, it 

would be possible to adjust the thresholds more precisely. 

However, they cost lots of time (in practice, they did in our 

preliminary experiments). The method presented in this section is 

a simple and efficient one among the possible ones. 

4．Experiments and Discussion 

For experiments, video sequences (640 × 480 pixels) were 

obtained by freely moving a calibrated camera (Logitech Qcam 

Pro 9000) around a real scene (Fig. 1) several times. From the 

sequences, the camera poses were estimated using the testbed 

camera tracking system (without or with the adaptive edge 

detection). Then, pose errors were computed by differencing the 

poses from those that were initialized by the ARToolKit [1] and 

optimized by applying sparse bundle adjustment [10] to the 

correspondences of feature points stacked over L frames. Jitters 

were computed from the temporal differentiation of the pose 

errors. The errors and jitters were averaged over the video 

sequences. In the adaptive edge detection, N, σ0, w0, Bw, Bh, λ0, 

and Wmin was heuristically set to 3, 100, 0.1, 64, 48, 0.3, and 0.7.  

As guessed in Sect. 3, the proposed method assumes that the 

gradients of the true hypotheses and those of the false hypotheses 

can be separated (specifically, their difference must be larger 

than at least 2.5σ). To show that the assumption is satisfied, we 

                                                                                
when their reprojection errors were lower than 2. 
1 Since, in our testbed system, the Canny operator was used for 

detecting edges, we described a method of adjusting the 

thresholds (high and low ones for hysteresis thresholding) of the 

Canny operator in this paper. However, the scheme can be used 

for other edge detectors. 

also looked into the gradients of the false hypotheses and 

compared them with those of the true hypotheses. In the upper 

figure of Fig. 2, the solid line represents the difference between 

the mean of the gradients of the true hypotheses and that of the 

false hypotheses in a block and the dashed line represents the 

value of 2.5σ. In the lower figure, „1‟ indicates that there exists a 

distribution that has w larger than a constant Wmin and also has a 

largest w/σ among the N distributions for the true hypotheses, i.e. 

the adaptive thresholds computed by Eqs. (6) and (7) are used. In 

contrast, „0‟ indicates that the predefined thresholds are used. 

When the adaptive thresholds were used, the difference between 

the mean of the gradients of the true hypotheses and that of the 

false hypotheses was always larger than 2.5σ. Consequently, we 

can know that the assumption is satisfied in practice. 

 

 
Fig. 1. A real scene (215 × 310 × 215 mm) and its 3D wired 

model used in our experiments. 

 

 
Fig. 2. Upper: The solid line represents the difference between 

the mean of the gradients of the true hypotheses and that of the 

false hypotheses in a block and the dashed line represents the 

value of 2.5σ, lower: „1‟ and „0‟ indicate that the adaptive edge 

detection is available or not. 

 

Without the adaptive edge detection, the projected edges had 

about 1.898 hypotheses on average and were relatively likely to 

be matched with the false hypotheses as shown in Fig. 3. The 

camera pose errors in translations and rotations were about 4.439 

mm and 0.541 degree, respectively (Fig. 4 and Tab. 1). In 

addition, the jitters in translations and rotations were about 1.383 

mm/frame and 0.177 degree/frame, respectively (Fig. 4 and Tab. 

1). 

However, by using the adaptive edge detection, the number of 
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hypotheses was reduced to 1.793 (the false hypotheses were less 

detected) and only the hypotheses that have similar gradients to 

the true hypotheses remained. The projected edges were likely to 

be matched with the true hypotheses as shown in Fig. 3. 

 

 
(a) 

 
(b) 

Fig. 3. Edge tracking. (a) Edges detected by the conventional 

Canny operator, (b) edges detected by the adaptive edge 

detection method and their tracking. By reducing the false 

hypotheses, the probability of matching with the false hypotheses 

decreased. In the images, small empty and filled circles indicate 

the projections of the sampled edge points on the 3D scene 

model and their correspondences, respectively, and short straight 

lines passing through the circles indicate the range for searching 

the correspondences. In this paper, the searching range was set to 

30. 

 

By using the adaptive edge detection, the camera pose errors 

were reduced to 3.967 mm in translations and 0.493 degree in 

rotations and the jitters were reduced to 1.305 mm/frame in 

translations and 0.166 degree/frame in rotations as shown in Fig. 

4 and Tab. 2. As mentioned before, the proposed method is based 

on the assumption that the gradients of the true hypotheses are 

separated from those of the false hypotheses. Therefore, in the 

regions where the gradients of the true and false hypotheses are 

similar, it is possible that the variation of the gradients caused by 

illumination or viewpoint changes is larger than the difference in 

gradients between the true and false hypotheses. In that case, the 

true hypotheses may be rejected by the wrong Gaussian 

distributions. Thus, the rejection was forced to be conservative to 

avoid false positives and the overall improvement was not 

impressive as expected in our experiments where the scene 

conditions were not manipulated for satisfying the assumption. 

 

Table 1. Camera pose error and jitter without the adaptive edge 

detection 

 t1 t2 t3 r1 r2 r3 

Error 4.336 4.867 4.112 0.688 0.453 0.484 

Jitter 1.326 1.528 1.295 0.214 0.164 0.152 

 

Table 2. Camera pose error and jitter with the adaptive edge 

detection 

 t1 t2 t3 r1 r2 r3 

Error 4.260 4.291 3.351 0.558 0.448 0.472 

Jitter 1.378 1.337 1.199 0.211 0.140 0.146 

 

The adaptive edge detection increased the processing time of 

the testbed system by about 4 ms and slightly dropped the frame 

rate from 25 Hz to around 23 Hz on a laptop PC (2.8 GHz dual-

core CPU). Therefore, we would like to say that the proposed 

method focuses on increasing the accuracy and stability at the 

small expense of speed. 

5．Conclusion 

In this paper, we proposed an adaptive edge detection and 

tracking method that models the edge gradients as a mixture of 

Gaussian distributions and adjusts the thresholds of the Canny 

operator. Based on the method, we could reduce the number of 

false hypotheses by 12% and improve the accuracy and stability 

of the testbed model-based camera tracking system by 10% and 

6%, respectively. 

In this paper, the lighting environment was fixed. However, 

the proposed method can be used for the purpose of robustly 

tracking edges under a time-varying lighting environment. Its 

verification remains as a future work. 
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Fig. 4. Camera pose results of a video sequence. 
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