I-004

ホログラム面からの逆追跡による CGH 計算法

A Calculation method of Computer Generated Hologram by Reverse-Tracing from Hologram plane

> 翼† 坂本 雄児† 市川 Tsubasa Ichikawa

Yuji Sakamoto

1. まえがき

計算機合成ホログラム (CGH:Computer Generated Hologram)は計算機内で作成された仮想物体からの光波の伝搬を シミュレートすることでホログラムを作成する技術である. CGH は三次元像を知覚するための人間の生理的要因を満たし ているため,理想的な三次元表示技術として注目されている.

しかしながら, CGH ではリアリスティックな物体のレンダ リング技術に関する研究が十分に確立されていない.通常三 次元画像を表現する際には、背後の面の隠面処理が必要とな る.これまで CGH では隠面処理の手法として,シルエット 近似法を用いた波動光学的方法 [1], また CG における Z バッ ファを拡張して CGH に応用した幾何光学近似的方法 [2-4] な どが提案されている.波動光学的手法では物体をポリゴンモ デルとして扱い,複雑なプログラムを独自に実装する必要が あるため,反射特性などの他のレンダリング技術を適用する のが難しい.一方,幾何光学的な手法ではZバッファ法を用 いているため,反射や屈折,影の処理が難しく,リアルな画像 を作成するのには不向きであるといわれる.

そこで本研究では CG のレンダリング技術であるレイト -シング法を用いて隠面処理を行う CGH 計算法を提案す る.レイトレーシング法は非常に単純な手法であるが,計算 量が膨大になる.よって非常に高い解像度を持つ CGH では 避けられてきたが,昨今のコンピュータの性能の向上により 現実的な時間での計算が可能になった.本稿では自由視点で ある CGH にレイトレーシング法を応用するための手法を紹 介する.また光学再生実験を行い,複数の物体が一つのシー ン上にある場合にも隠面処理が行われたことが確認できたの でここに報告する.

2.提案手法

提案手法において仮想物体は平面のポリゴンによって構成 されるが,レイトレーシング法によって得られた交点群を点 光源の集合として扱い計算することで CGH を作成する.CG におけるレイトレーシング法では,固定された視点より画面 上の各画素へとレイを飛ばすことによって,ポリゴンとの交 点を計算する.しかし CGH では運動視差が必要となるため、 ·つの視点によるレイトレーシングでは視点の移動に伴い物 体が他の物体に隠されたり、逆に現れたりする場合には像が 欠けたり重なったりしてしまう.そこで,ホログラムを複数 の要素ホログラムに分割して,それぞれの要素ホログラムの 中央をレイの始点とすることで,領域ごとに要素ホログラム の点光源集合を生成し近似的に解決する.

本手法の特徴として各要素ホログラムおよび各レイは独立 しているため並列化に向いており,複数の CPU を用いた高速 処理が容易であることが挙げられる.またレイトレーシング 法を用いているため反射特性や多重反射による映り込み,屈 折,透過処理などのレンダリングをCGH に適用することが 可能である.以下より CGH 作成までの各処理を詳細に記す.

2.1 光線追跡法による交差判定

まずホログラム面を要素ホログラムサイズに分割する.こ の際の要素ホログラムの分割幅により連続視差に影響が出る. 多視点画像を用いた CGH の研究により 1[mm] 程度の要素 ホログラムサイズであれば連続視差に問題がないといわれて いる.よって本研究では要素ホログラムサイズを 9.5[µm]の ピッチで 128 画素とした.図1にホログラム面の要素ホログ ラムによるセグメント分割と, レイを飛ばす始点およびその 範囲 20 を示す. 0 は干渉縞を表示するディスプレイの周波数 制限を示し,ディスプレイのピッチによって決定する.次に 要素ホログラムの中心からレイを飛ばしてレイとポリゴンの 交点を求める (図 2). ここでレイ間の角度 △θ は人間の目の 分解能である 1/60 度とする.これによりレイ間の隙間は人間 の目では判別することができなくなり,交点を点光源として 計算しても面を表現することが可能になる.レイとポリゴン の交差判定については CG におけるレイトレーシング法と同 様の計算を行っているのでここでは説明を省略する.

2.2 要素ホログラムごとの光波計算

レイトレーシング法を用いてレイとポリゴンの交点を求め た後、交点を点光源として各要素ホログラムまでの光波伝搬 を以下の式により計算する.

$$h_m(x,y) = \sum_{i=1}^{I} \frac{A_i}{r_i(x,y)} \cdot \exp\left(j\frac{2\pi}{\lambda}r_i(x,y)\right) \cdot \exp(j\phi_i)(1)$$

ここでインデックス m は各要素ホログラムを示し, i は各 レイを示す.また λ は波長を, ϕ_i は各点光源の初期位相を表 す. $r_i(x,y)$, A_i はそれぞれ交点から要素ホログラム上の各画 素への距離と,交点の輝度を示す.点光源の輝度 A_i は交点の 法線情報,光源位置,レイの方向などを利用して様々な反射特 性を付与することが可能である. 各要素ホログラムのすべて のレイの交点からの光波を足し合わせることにより,ホログ ラム面上での光波を求める.

[†] 北海道大学大学院情報科学研究科

Graduate School of Information Science and Technology, Hokkaido University

\mathbf{z} 1 Setup parameters of the experiment.	
CPU	Core i7 2600k
Memory	8[GB]
Number of pixels	4096×2048 [pixels]
Number of elementary holograms	$32(H) \times 16(V)$
Sampling pitch	$9.5 imes9.5[\mu{ m m}]$
Wavelength	632[nm]

⊠ 3 Geometry of multi objects.

☑ 4 Optical Reconstructions.

3. 光学再生実験

提案手法により,隠面処理の施された三次元像が再生される ことを確認するために光学再生実験を行った.本実験におけ るコンピュータおよびホログラムの各種パラメータを表1に 示す.使用した CPU は4個のコア,8個のスレッド数を持っ ているため要素ホログラムごとに並列計算することで高速化 を図った.図3に本実験における三次元シーンの仮想物体の 配置を示す.背景のチェックの壁紙および手前の立方体は拡 散面とし,平行光線を用いて物体を照射した.

ディジタルカメラを用いて左右二視点より撮影された光学 再生像を図4に示す.視域角度が狭いため,前面に物体単一 だけでは運動視差を確認することはできないが,背景のチェッ クの壁紙に対する立方体の位置が撮影視点によって変化して いることがわかる.また像の位置が変化しても複数の物体の 再生像が重なったり,欠けたりしていないことから本手法に より隠面消去が行われていることが確認できる.

4. 計算時間考察

ここでは物体サイズを一定とした球ポリゴン分割数を増加 させ,ポリゴン数と一枚の要素ホログラムあたりの計算時間 との関係を調べた.図5に異なるポリゴン数で作成された球 の結像シミュレーション結果を載せる.図6がポリゴンの枚 数と交差判定および光波伝搬の計算時間の関係を表す.グラ フより,光波伝搬にかかる計算時間はポリゴン枚数に依存し ないことがわかる.これは放射されるレイの数が一定である ため,点光源となる交点の数も変化しないためである.これ に対し,レイトレーシング法による交差判定ではポリゴンの

(a) 112 polygons .

(b) 1984 polygons

⊠ 5 Computer simulations

 $\boxtimes 6$ Calculation time of a elementary hologram.

枚数に比例して計算時間が増加している.本実験では,球に 対し Phong の反射モデルによる反射特性を付与しているが, 図 5 を見て分かるように十分なポリゴン数がなければなめら かな曲面を作成することができない.しかし交差判定は独立 しており並列化に向いていることから,今後 GPU(Graphics Processing Unit)を用いた高速化が期待できる.

5. まとめ

本稿ではレイトレーシング法を用いた全方向視差を持つ CGH 作成法を提案し,光学再生実験結果より正しく隠面処理 が行われていたことが確認できた.本手法はレイトレーシン グ法を使用するため,反射特性や多重反射,屈折現象といっ たレンダリング技術を CGH に適用することが可能であると 期待される.今後は GPU を用いての並列化による高速計算, およびよりリアリティのある物体の CGH における表現法の 開発を進めていく.本研究の一部は日本学術振興会科学研究 補助金(課題番号 23300032)を用いて行われた.

参考文献

- K. Matsushima, S. Nakahara, "Extremely highdefinition full-parallax computer-generated hologram created by the polygon-based method", Appl. Opt., Vol 48, H54-64 (2009).
- [2] 高瀬, 坂本, 青木, "光線の到来方向を考慮した Z バッファ による計算機合成ホログラムの高速隠面処理法",映像情 報メディア学会誌, Vol. 57, pp.483-489 (2003).
- [3] 藤井、山口、吉川、"CG を利用した CGH の隠面処理改善 とディスクホログラムへの応用"、映像情報メディア学会 誌、Vol. 62, pp.527-532 (2003).
- [4] R. H. Chen, T. D. Wilkinson, "Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for threedimensional display", Appl. Opt., Vol 48, 4246-4255 (2009).

286 (第3分冊)