

A GUI GRAPHICS LIBRARY FOR EMBEDDED DEVICES

Armand GIRIER
*
, Yusuke FUKAI

*
, Akira NAKANISHI

*
, Takeo HORIGUCHI

*

Abstract

This paper presents the architecture of a 3D GUI framework

realized by extending an already existent 2D framework. By

taking advantage of the object oriented architecture of the

framework, we modified it to draw its widget using OpenGLES

2.0. As a result, it became able to benefit from hardware

accelerated graphics on recent embedded graphic systems.

Another extension was to allow manipulating widgets as 3D

objects while maintaining their original features.

Keywords: GUI, 3D, OpenGLES, hardware accelerated

graphics, GPU, embedded systems.

1 INTRODUCTION

Animated user interfaces have become ubiquitous on general

use embedded devices, the most obvious examples being smart

phones and tablets. It finds applications in user friendly

interfaces and intuitive use of touch panels. The enjoyable user

experience it provides makes it a highly desirable feature.

Although graphics animated at acceptable rate require huge

amounts of computing power, two factors made it possible even

for embedded devices. One is the dramatic reduction of

hardware costs along time, which allowed developing

reasonably powerful graphic processing units, fit for battery

devices. The second is the apparition in 2003 of OpenGLES[1],

a subset of the OpenGL 3D graphics API designed for

embedded devices, and its generalization as a de facto standard,

which made it possible to benefit from said embedded GPU

with a small footprint while maintaining portability.

Several GUI frameworks designed for embedded devices

offer support for OpenGLES. This paper describes the

extension of an already existent GUI framework, to not only

support 3D drawings through OpenGLES but become a fully

animated 3D GUI framework. We made it use OpenGLES for

all of its graphics operations, including the drawing of widgets

themselves. This combined with a simple 3D engine and a

monitoring framework for the original widgets, resulted in a

highly portable 3D animated GUI framework.

2 GENERAL ARCHITECTURE

The GUI toolkit we have extended was designed for

portability between different types of operating systems,

including embedded types of operating systems. For this, it has

to adapt to several graphics middleware and API. This is

usually done by providing a porting layer set of classes

implementing a draw toolkit interface which API provides

routines for drawing primitives like lines, rectangles, text and

bitmap images. Classes for Windows, X11 or other systems are

provided, and which class is instantiated at runtime is up to the

building process.

By providing an implementation that performs drawing using

OpenGLES, we can redirect the drawing instructions to the

GPU, thus making hardware accelerated graphics available for

any platform providing an OpenGLES implementation. The

point of this is not that the framework can merely draw

Fig. 1 Structure of a modern GUI framework and support for various platforms

Application

Image

Text

Button

GUI toolkit

Drawing interface

Windows

X11

Frame buffer

OpenGLES

Bridge interface Widgets:

new

*:Toshiba Corporation, Digital Products & Services Company

 Core Technology Center

Embedded System Technology Development Dept.

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 305

B-026

(第1分冊)

OpenGLES graphics on a canvas but that the very native

widgets will be drawn using OpenGLES, this change beeing

totally transparent to the other parts of the framework. This

drawing mecanism can be easily tested by comparing the

graphic result with one of the old implementations.

However, anyone familiar with OpenGLES drawing knows

that it requires more thought than the average 2D graphics API.

Careful timing and management of the ressources like textures

(images) and other memory buffers is necessary for optimised

performance. Moreover, features usually not supported by

regular graphics API have to be handled, like 3D

transformations, transparency, lightning and other effects. This

is handled by the simple 3D engine we developped for this

purpose.

3 EXTENTION TO 3D

Our goal was to achieve a hardware accelerated GUI

framework allowing 3D animation of widgets. In such a

framework, one would expect to find [2]:

 A way to provide 3D transforms, as used in 3D

graphics to modify the position, orientation and scale

of an object without modifying its own geometry, as

well as other setting relevant to 3D special effects.

 A way to propagate user events like mouse clicks

along the 3D engine, in order to determine which

object in the 3D space has been picked by a click on

the 2D screen.

 A way to make sure the timing of it all is the one

expected by OpenGLES.

As stated earlier, drawing with OpenGLES requires more

thought than with the average 2D graphics API. The notion of

3D space has to be taken into account and low level

management of resources and timing is necessary to draw

anything at all. This supplementary information can’t be

given through the drawing toolkit API (it was not designed for

it) so it was necessary to adapt a simple 3D engine to the

original GUI framework. In order to provide the three features

above, we made use of a proxy [3] class system that will be

explained in details.

GUI frameworks are usually organized in a hierarchical way,

with composite widgets including component widgets, and

possibly being components themselves in upper level

composites. When one modifies the position of a container, the

components are expected to move accordingly. 3D engines use

the same pattern with tree graphs of ordered objects whose

absolute position depends on the absolute position of the

objects upper in the hierarchy and their own position relative to

their direct parent. The two types of hierarchies can be

naturally tied together using proxy objects.

Proxy objects are designed to implement the interface of

elements of one hierarchy while transmitting their input to the

elements of another hierarchy. They embody a two way

communication between widgets and the 3D engine. At

drawing time, the 3D engine is in charge of the frame rate.

After proper initialization of the OpenGLES state machine, it

draws the tree graph - which elements are proxies to widgets -

in depth first traversal. Each proxy first sets OpenGLES

accordingly, for example - but not limited to - setting its 3D

transform. Then, the proxy makes its widget to draw itself

using its API. The drawing instructions are converted into

OpenGLES operations as stated in section 2. This process of

delegating the control of drawing to the 3D engine while

disabling it from the original framework gives us the possibility

to ensure proper setting of OpenGLES at the proper timing.

Widget A

Widget B

Proxy C

Proxy A

Widget C

Proxy B

2D framework 3D engine

messages exchange Widget

attributes and

features

-

Event

handling

3D transforms

Renderer

Fig. 2 Extension of the two hierarchies by the mean of proxies

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 306

(第1分冊)

4 EVENT HANDLING

In most of the cases propagation of events can be done in the

usual way of the original framework because they are not

depending on the 3D space (keyboard events, timer events). On

the other hand the case of mouse events or touch panel contact,

any event that is located on the 2D screen, requires knowledge

of the 3D space.

This is done by intercepting them at the root of the widget

hierarchy and propagating them in the 3D engine hierarchy

instead. The engine having knowledge of the transform of each

widget can locate the one that has been picked by the user if

there is any. Ray casting is a fairly common way to do this. The

corresponding proxy is then used to transmit the event to its

widget.

Interception of the original GUI toolkit’s events could be

done without any modifications of its code, by registering

proper event handlers on the original widget that will notify the

proxy. Such registration can be done transparently on linking

the widget to the proxy.

2D framework 3D engine

Widget proxy

draw toolkit OpenGLES

draw toolkit proxy widget 3D engine OpenGLES

draw sequence

proxy widget

unlocalised event sequence

2D framework

2D framework

localised event sequence

3D engine proxy widget

call draw

3D settings

primitives

drawing

call draw

trigger

notify

transmit

trigger

find by

casting ray

trigger

Fig. 3 Circulation of messages between modules and sequences

3D drawings

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 307

(第1分冊)

5 SAMPLE CODE

Such framework gives us the possibility to create and user

interface and to animate its widgets with simple code.

6 EMBEDDED GRAPHICS
CONSIDERATIONS

The graphic module was developed based on OpenGLES2.0

in order to benefit from its programmable pipeline [4]. It

introduced the difficulty that no default fixed pipeline is

provided. Re producing a full blown OpenGLES1.1 pipeline is

indeed well documented in the literature [4] but raises

performance problems depending on the implementation of

OpenGLES2.0 it is run on. Shaders with many branch

statements tend to run with poor performance because it

prevents parallel execution.

In order to counter such inconvenience, we developed a set

of specialized shaders with one pipeline for lines, one for plain

colors, one for textures, and others designed for special effects

like blurring. The shortness of such specialized shader (often

less than 5 LOC) allows fast execution even on low power

GPUs. In order to use the correct shader at runtime, proxies

are affected a “renderer” strategy [3] depending on the type of

Widget they have to handle. While traversing the 3D scene

graph the engine sets the relevant renderer before calling the

drawing method of the widgets.

Performance measurements on various embedded GPUs at

our laboratory showed that the overhead of switching between

specialized shaders was negligible in regards of the

performance lost induced by multifunction, monolithic shaders.

7 CONCLUSION

We have explained the way we extended a standard 2D GUI

framework freely available for modification in order to obtain

an animated 3D framework, benefitting of graphics hardware

acceleration, yet with all the features of the original. This was

done by replacing its drawing mechanism in order to draw the

very widgets using OpenGLES and adding to it a simple 3D

engine for piloting the graphic library.

We also demonstrated that, on embedded GPUs that have

low performances when executing long shaders with

conditional branches, for example one that would emulate a

general pipe line fit for any purpose, good performances could

be obtained by switching between specialized, comparatively

short shaders depending on the drawing performed at the

moment. It also allowed using special effects thanks to the

programable pipeline even on embedded level harware.

All of the extensions are based on rather common features of

modern GUI toolkits, namely the existence of a graphic

portability layer (section 2) and customizable event handler for

widgets (section 4). We are confident that such an extention

could easily be applied to any modern 2D GUI toolkit.

8 REFERENCES

[1] OpenGLES2.0 http://www.khronos.org/opengles/

[2] Kari Pulli, Tomi Aarnio, Ville Miettinen, Kimmo

Roimela, Jani Vaarala, “mobile 3D graphics”, Morgan

Kaufmann, ISBN 978-012-373727-4 (2008)

[3] Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides “Design Patterns: Elements of Reusable

Object-Oriented Software”,

Addison-Wesley. ISBN 0-201-63361-2 (1995)

[4] Aaftab Munshi, Dan Ginsburg, Dave Shreiner,

“OpenGLES2.0 programming guide”, Addison Wesley, ISBN

0-321-50279-5 (2009)

// First create a window, a frame and a widget

Window* win = new Window(…);

Frame* fram= new Frame(win, …);
Proxy* fram_proxy = new Proxy(fram);

Button* btn = new Button(fram, …);
Proxy* btn_proxy = new Proxy(btn);

// Links the button’s proxy in the 3D engine hierarchy

fram_proxy->addChild(btn_proxy);

// […]

btn_proxy->setPosition(X, Y, Z);
btn_proxy->rotate(45);

// […]

// In the button event handler: rotate when activated

Animation* anim =
btn_proxy->animateToTransform(new_transform);
ScheduleAnimation(anim, start_time, stop_time)

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 308

(第1分冊)

