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Abstract—Combination of interleaving and random er-
ror correction code is effective as a measure against burst
error when power line is used for communication between
ECUs in a car. However, since many ECUs are mounted
in a car, miniaturization and cost reduction are required for
reliable communication circuits. In this study, we construct
an LDPC decoder circuit that performs error correction in
the delta sigma domain based on the Min-Sum algorithm
and attempts to downsize the circuit.

1. Introduction

In recent years, computerization of automobile technol-
ogy has advanced. Today, several tens to hundreds of com-
puters called ECU (Electronic Control Unit) are mounted
per car. The number of wires required for communication
among a large number of ECUs is enormous, the use of
power lines is being considered. However, since impulsive
noises emitted by drive-train such as an engine and a mo-
tor are superimposed on a power line, a burst error occurs
in the communication [1]. As a countermeasure for burst
error, a combination of interleaving and random error cor-
rection coding is common. However, as mentioned above,
since many ECUs are mounted in a car, downsizing and
cost reduction of circuits for improving the reliability of
communication are required.
　 The LDPC（Low Density Parity Check） code [2] is a
long linear block code associated with a very sparse parity
check matrix. By applying a decoding algorithm based on
probability propagation [3], the LDPC not only achieves
transmission capability approaching the Shannon limit but
also has the advantage of decoding in linear time. Conse-
quently, it is put to practical use as a code with high error
correction capability.
　Delta-sigma domain functional circuits operate on delta-
sigma modulated signals and output signals in the same
form [4][5]. The adder and absolute delta-sigma domain
circuit used in this study are built simply and reduction of
the scale of the LSI to which they are applied is expected.
In this study, we aim to reduce the size of the LDPC de-
coder based on the Min-Sum algorithm by applying the
delta-sigma domain circuits.

2. Delta Sigma Modulated Signal and Function Circuit

Circuits in the delta sigma domain are circuits that use a
delta sigma modulated signal form for their input and out-
put signals. In this study, the signals are first-order binary
delta-sigma modulated.

2.1. First Order Delta Sigma Modulation
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Figure 1: First order delta sigma modulator

The first order delta-sigma modulator [6] is constructed
as shown in figure 1. The locally averaged value of the
output is forced to track the input by the integrator and the
feedback loop, that is y(n) ≈ x(n), and the signal band com-
ponents of the quantization noise are swept out to the high
frequency band.
　The operation of the first-order delta-sigma modulator is
expressed by the following equation:

u(n + 1) = u(n) + x(n) − y(n) (1)

Q(u(n)) =
{

1 if u(n) ≥ 0
−1 if u(n) < 0 (2)

y(n) = Q(u(n)) ∈ {+1,−1} (3)

where n is the time index. The output Q(u(n)) of the quan-
tizer is expressed by equation (2).

2.2. Function Circuit in Delta Sigma Domain

Delta-sigma domain circuits, an adder, a signum func-
tion, an absolute circuit, and a Min-Max circuit, are ex-
plained [4] [5].
　 The adder is constructed as shown in figure 2. The sort-
ing circuit [7] in the adder outputs +1 (−1) at its center
output terminal if the sum of their inputs is larger (smaller)
than the given threshold value. The input sum and output
sum of the sorting circuit are equal. Also, the output of the- 213 -
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Figure 2: Adder circuit

sorting circuit is fed back through unit time delay (D). As-
suming that the sum of the uppermost and the lower most
outputs of the sorting circuit is 0, then Type1-adder and
Type2-adder in 2 can be represented by the following equa-
tions (4) and (5) respectively:

u(n + 1) + v(n + 1) + z(n + 1)
= u(n) + v(n) + x(n) + y(n) − z(n) (4)

u(n + 1) + v(n + 1) + z(n + 1)
= u(n) + v(n) + x(n) + y(n) ± 1 (5)

From equations (4), (5), u(n + 1) ≈ u(n), and v(n + 1) ≈
v(n), the outputs of the two types of the adders are given by
the following equation:

Type1 : z(n) =
x(n) + y(n)

2
(6)

Type2 : z(n) = x(n) + y(n) (7)

　 The size of the adder circuit is about the same as the
so-called full adder and one bit of the register. Therefore,
the circuit scale can be greatly reduced as compared with
conventional multi-bit adders.
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Figure 3: Signum function
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Figure 4: Absolute circuit

　 The signum function and the absolute circuit are con-
structed as shown in figures 3 and 4 respectively. The delta-
sigma modulated signal has a characteristic that it does not

take −1 (+1) continuously when its local average is posi-
tive (negative). Therefore, by comparing the two consec-
utive bits of the delta-sigma modulated signal using one
clock delay and SR flip-flop as shown in figure 3, its pos-
itive and negative can be judged. The absolute value of a
delta-sigma modulated signal is obtained by the exclusive
OR operation on the signal and the output of the signum
function, as shown in figure 4.
　 The size of the absolute value circuit is about the same
as that of one bit of 2’s complement circuit. Therefore, the
circuit scale can be greatly reduced as compared with the
binary absolute value circuit.
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Figure 5: Minimum selector

　 As shown in the figure 5, the minimum selector can be
constructed by using Type1 − adder, Type2 − adder, and an
absolute value circuit. From the figure, the output can be
represented by the following equation:

z(n) =
x(n) + y(n)

2
− | x(n) − y(n)

2
|

= min(x(n), y(n)) (8)

where z(n) is the output and x(n) and y(n) are the two in-
puts.

3. Communication Method

3.1. Communication System

The model of the communication system using the
LDPC code is shown in figure 6. In this study, the part
that diffuses burst errors by interleaving is omitted. It is
assumed that the generator matrix G is obtained in ad-
vance from the parity check matrix H. The code word
(c1, c2, . . . , cn) of the LDPC code is obtained by multiply-
ing the k bit binary information vector (m1,m2, . . . ,mk)
by the generator matrix G. The codewords are sent to
the channel through the modulator. The signal received
through the channel is decoded by the decoder.

3.2. Binary input Gaussian noise channel

Each bit of the codeword is transformed to a bipolar sig-
nal xi (0 → +1, 1 → −1) and sent to an additive Gaussian
white noise channel at time i. Then, at the received signal
yi is given by

yi = xi + ni (9)- 214 -
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Figure 6: Communication system of LDPC code

4. LDPC Decoding

4.1. Tanner Graph and MAP Decoding Method

When the parity check matrix is expressed by the fol-
lowing equation, the transmission code estimation can be
represented by a graph as shown in figure 7.

H =

 1 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 1

 (10)

This is a bipartite graph called Tanner graph, which con-
sists of variable nodes corresponding to each column of H
and check nodes corresponding to each row of H. Since
the nodes corresponding to 1 of H are connected by edges,
the number of branches of the Tanner graph is equal to the
number of 1 of H.
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Figure 7: Example of LDPC code (Tanner graph representation)

　 The MAP(Maximum A Posteriori) decoding is a decod-
ing method of estimating the most probable message from
the received signal. More specifically, a posteriori proba-
bility P(xi = b|y), b ∈ {0, 1}, for the transmission codeword
x is calculated from the received codeword y, and a sym-
bol xi that maximizes the posterior probability is taken as
its estimate. The posterior probability is given by

P(xk = b|y) =
∑

x∈C,xk=b

∏
i∈[1,n]

P(xi)P(yi|xi) (11)

where C represents the entire set of codewords.

4.2. Min-Sum Algorithm

The Sum-Product decoding [2] is an approximate MAP
decoding algorithm. In this study, we show Min-Sum de-
coding which performs Sum-Product decoding in the log-
domain with simple approximate computation.

　 The binary M × N matrix H is a check matrix of the
LDPC code to be decoded. An m-th row and n-th column
element Hmn of H. The subsets A(m), B(n) of the set [1,N]
are defined as follows:

A(m) ≜ {n : Hmn = 1} (12)

B(n) ≜ {m : Hmn = 1} (13)

　 The flow of the algorithm is as follows:
Step 1　 For all pairs (m, n) that satisfy Hmn = 1, let the
logarithmic prior value ratio be βmn = yn (yn: received sig-
nal).
Step 2 　 The logarithmic external value ratio αmn is up-
dated using the following equation:

αmn =

 ∏
n′∈A(m)\n

sign(u)

 min
n′∈A(m)\n

|u| (14)

where u is λn′ + βmn′ , and as ni in equation (9) is Gaussian
noise, the log-likelihood ratio is λn = yn.
Step 3　 Update βmn with the following expression:

βmn =
∑

m′∈B(n)\m
αm′n (15)

Step 4　 The temporary estimated word ĉn is obtained by
using the following equation:

ĉn =


0 if sign(λn +

∑
m′∈B(n)

αm′n) = 1

1 if sign(λn +
∑

m′∈B(n)
αm′n) = −1 (16)

Step 5　 It checks whether the temporary estimated word
is a codeword. If ĉHT = 0 is satisfied, (ĉ1, ĉ2, . . . , ĉN) is
the estimated word and the algorithm is terminated. If not,
return to Step 2.

5. LDPC Decoding Circuit in Delta Sigma Domain

A circuit that performs the Min-Sum decoding algorithm
in the delta-sigma domain is constructed in this section.
This circuit calculates the equation (14), (15), and (16)
shown in 4.2 by the arithmetic units (adders, signum func-
tions, absolute circuits, and Min-Max circuits) introduced
in 2.2. It should be noted that the delta-sigma modulated
signal form is a pulse waveform of −1 and 1, and the lo-
cal average value is limited to the range of [−1, 1]. There-
fore, when obtaining the log-likelihood ratio λn from the
received signal y containing Gaussian noise, y has to be
scaled so that the averaged output of the arithmetic circuit
is not saturated to ±1. In addition, the following equation is
used as an approximate value Ln of the log posterior prob-
ability ratio as a measure to prevent the local average value
from exceeding the range of [−1, 1]:

Ln =
λn +

∑
m′∈B(n) αm′n

p
(17)

The denominator p is an integer obtained by adding 1 to
the number of elements of B(n).- 215 -



6. Experimental Result

We carried out computer simulation of the operation of
the decoding circuit described in section 5 with Simulink.
We prepared [1 1 − 1 1 − 1 − 1] for the transmission
signal and [−0.1 0.5 − 0.8 1.0 − 0.7 0.5] for the received
signal as a result of the Gaussian noise being added (2 bits
wrong if Hard Decision was done). This is applied to the
delta-sigma domain decoder and a conventional real-valued
decoder and their results are compared. The initial log liked
ratio n is [−0.07 0.35 − 0.56 0.7 − 0.49 0.35]. The parity
check matrix handled is as follows:

H =


1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

 (18)

The local average value of the approximate value of the log
posterior probability ratio computed in the delta sigma do-
main is shown in figure 8. Table 1 compares the average
values with the results of real-valued decoding. It shows
that the ratios are almost the same for all bits. The table
validates that the sigma-delta domain decoding is success-
ful.

7. Conclusions

In this study, LDPC decoding circuit was constructed us-
ing function circuit in the delta-sigma domain. It has been
confirmed from the experiment results that the proposed
decoding circuit in the delta sigma domain is accurately
operated. As a feature of the delta sigma modulation, the
quantization noise spectrum is large in the high frequency
band. However, its influence was small, and the feedback
loop was not unstable. The scale of the decoding circuit
could be reduced because the row processing and the col-
umn processing can be executed only with the simple cir-
cuit described in 2.2. As a future work, we will attempt to
execute decoding using the Min-Max algorithm in the delta
sigma domain for the GF(2N) LDPC code, N > 1.
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Figure 8: The values of L computed in the delta-sigma domain

Table 1: Comparison of log posterior probability ratios

bit 1 2 3 4 5 6
Real-valued 0.163 0.210 -0.163 0.256 -0.256 -0.070
ΔΣ domain 0.160 0.207 -0.164 0.258 -0.273 -0.070
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