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Abstract—In this paper we present a novel computing
approach for conducting recurrence quantification analy-
sis. It utilises the concepts of Divide and Recombine to dis-
tribute the detection of vertical and diagonal lines in a re-
currence matrix among multiple graphics card processors.
We employ our approach to calculate recurrence quantifi-
cation measures based on an hourly air temperature record
of Potsdam, a time series with more than one million data
points. The proposed calculation scheme reduces the com-
puting time drastically; from more than 6 h using a single-
threaded CPU implementation to about 5 min using two
graphics card processors.

1. Introduction

Recurrence plots (RPs) and recurrence quantification
analysis (RQA) are powerful instruments for analysing re-
currences in measured time series [1]. Their application in
many fields have proven their potential for various kinds of
analyses [2, 3, 4, 5, 6]. Small scale structures in a RP, such
as diagonal lines, are used to define measures of complex-
ity, establishing the RQA [1, 7, 8].

The time complexity of calculating the RQA measures is
O(N?), prohibiting an efficient computation for very long
time series. Furthermore, current implementations of RQA
are restricted concerning memory usaée. The Cross Re-
currence Plot Toolbox for MATLABY [9] is limited to
N < 10,000 data points when calculating the entire RP.
Likewise, the RQA software by Webber Jr. [10] is capable
of processing only up to N = 5, 000 data points.

Investigating the existing implementations, we devel-
oped a computing approach that builds on the concepts of
Divide and Recombine (D&R) [11]. We illustrate the ca-
pabilities of our approach in comparison to existing im-
plementations using an application example from climate
impact research.

2. Our Approach

2.1. Divide and Recombine

Divide and Recombine is a general approach to address
large computational problems. The basic idea is to divide a
data set into small sub sets allowing the fast computation of
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Figure 1: Our computing approach.

analytical results of the sub sets. The intermediate results
of the sub sets are recombined into a global solution.

We apply D&R to recurrence quantification analysis as
follows. The underlying recurrence matrix of a RP is di-
vided into multiple sub matrices (see Fig. 1(a), Fig. 1(b)).
Within each sub matrix, we detect all vertical and diagonal
lines, storing this information in local histograms. The key
contribution of our approach is that the detection of lines
within a single sub matrix is performed by a graphics card
processor. Its architecture allows to execute a large num-
ber of vertical and diagonal line detection tasks simulta-
neously (depicted as dotted arrows in Fig. 1(c)). The local
histograms are recombined into two global histograms; one
for vertical and one for diagonal lines. The recombination
process is straightforward: We add up the local histograms,
either referring to vertical or diagonal lines, to a global his-
togram. Based on the two global histograms, we compute
the global RQA measures (see Fig. 1(d)).

2.2. Detection of Vertical and Diagonal Lines

An important challenge in the context of RQA is that
vertical and diagonal lines may spread over multiple sub
matrices. This is the reason why Divide and Recombine
can not be used as a wrapper for existing RQA implemen-
tations. This approach would compute only valid results
for the individual sub matrices. Enforcing the computa-
tion of valid global frequency distributions of vertical and
diagonal lines, we introduce carryover buffers; one for ver-
tical and one for diagonal lines. The basic purpose of a
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carryover buffer is to share information about the length of
vertical or diagonal lines that exceed the borders of a sub
matrix.

For each column, the vertical carryover buffer stores the
length of all vertical lines that exceed the horizontal border
of a sub matrix. If a vertical line reaches the last element
of a column of a sub matrix, the corresponding carryover
buffer element stores its current length. This value is used
as input for determining vertical lines in the vertically ad-
jacent sub matrix. As a precondition, the sub matrices have
to be processed in a specific order (see Fig. 2).

This concept can easily be adapted to the detection of di-
agonal lines, including the use of a carryover buffer and a
particular order of processing concerning the set of sub ma-
trices. The major difference is that a diagonal line may tran-
scend not only the horizontal but also the vertical borders of
sub matrices. Furthermore, the size of the carryover buffer
is equivalent to the number of diagonals (not the number of
diagonal lines) within the original recurrence matrix. Fig-
ure 3 depicts the detection of diagonal lines. To illustrate,
the RP in this figure contains only a single diagonal line of
length 5.

2.3. Discussion of Parameters

As a precondition, we subdivide the recurrence matrix
into quadratic sub matrices with a predefined edge length;
except the sub matrices at the borders of the original recur-
rence matrix. In general, the user can choose an arbitrary
edge length. Nevertheless, experiments have shown that
the size of the sub matrices highly influences the overall
computing time. Therefore, it should adhere to the specifics
of the GPU architecture as well as the programming frame-
work applied. Future work is to investigate the impact of
sub matrix size to the runtime in detail.

In addition, not all sub matrices share information about
the same diagonals and verticals of the original recurrence
matrix. Therefore, they do not have to exchange informa-
tion using the carryover buffer. Generally, sub matrices
which do not share any element of the carryover buffer can
be processed concurrently. Our approach allows to utilise
multiple GPU devices by processing a number of sub ma-
trices at the same time. This reduces the overall computing
time additionally.

3. Application to Climate Data

We use the hourly air temperature dynamics in Potsdam,
referred to as Potsdamer Klimareihe, to demonstrate the
benefits of our approach. We consider the period from 1893
until 2011, resulting in 1,043,112 data points.

We analysed the the Potsdamer Klimareihe using our
D&R approach. We provide an implementation based on
the OpenCL™ framework for parallel programming of het-
erogeneous systems [12]. The hardware setup of the ex-
periment consists of a standard desktop workstation, con-
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Figure 2: Detection of vertical lines. To compute a valid
global RQA result, the sub matrices have to be processed
in ascending order (I. — [1.). This is due to the reason that
the column elements of the original recurrence matrix have
to be processed in ascending order. The corresponding car-
ryover buffer element stores the lengths (3 and 0) of the
vertical lines detected (if present) at the horizontal borders
of 1. and /1. The intermediate states of the carryover buffer
element after processing each sub matrix are depicted on
the right.
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Figure 3: Detection of diagonal lines. Similar to the de-
tection of vertical lines, the sub matrices have to be pro-
cessed in ascending order (. — II. — II1.), referring to
the ascending order of the diagonal elements within the
original recurrence matrix. The corresponding carryover
buffer element stores the lengths (2, 3 and 0) of the diago-
nal lines detected (if present) at the horizontal and vertical
borders of 1., I1. and I11. The intermediate states of the car-
ryover buffer element after processing each sub matrix are
depicted on the right.
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taining an Intel® Core™ i5-3570 quad-core CPU at up
to 3.80GHz and 16GB of main memory. It also includes
a NVIDIA® GeForce® GTX™ 690 that provides two
graphics card processors running at up to 1.019GHz; each
of them is supplied with 2GB of memory. In the context
of heterogeneous computing, each graphics card processor
is treated as a separate computing device. The workstation
runs on a 64-bit version of OpenSuse 12.1 with version 1.1
of OpenCL™,

To demonstrate its scale-out capabilities, we com-
pare our massively parallel GPU implementation to two
non-D&R CPU implementations (see Tab. 1, Tab. 2).
The single-threaded RQA implementation refers to ver-
sion 1.13z of the Commandline Recurrence Plots tool,
which is available at http://tocsy.pik-potsdam.de/
commandline-rp.php. The multi-threaded is an exten-
sion of the single-threaded implementation running multi-
ple CPU threads. Our approach allows the utilization of a
single GPU device (/x) or both GPU devices (2x) available
in our computing environment.

Runtime

6 h 18 min 4 sec
1 h 33 min 58 sec
10 min 11 sec

5 min 10 sec

Technology

CPU - Single Thread
CPU - Multiple Threads
GPU - 1x

GPU - 2x

Table 1: Runtimes for RQA calculations for the full time
series of hourly temperature anomaly data of Potsdam from
1893 to 2011.

Technology Runtime Improvement
CPU - Single Thread ~ 73 times
CPU - Multiple Threads ~ 18 times
GPU - 1x ~ 2 times
Table 2: Runtime improvements considering the

OpenCL™ implementation running on two GPU de-
vices as a reference; based on the runtime measurements
presented in Tab. 1.

The runtime experiment shows that our D&R approach
calculates the RQA measures in roughly five minutes (see
Tab. 1, Fig. 4). Note, the RQA computations employing
the Commandline Recurrence Plots tool running on a CPU
takes over six hours. This renders a comprehensive analysis
of this data set impossible. In contrast, the fast computation
of the RQA measures using our D&R approach enables a
comprehensive analysis of the Potsdam temperature pro-
file. It allows to calculate RQA measures for a variety of
combinations of embedding dimension m, time delay T and
similarity threshold € in a reasonable amount of time.

We observed the four RQA measures recurrence rate
(RR), determinism (DET), average diagonal line length

Il (a) CPU - Single Thread
Il (b) CPU - Multiple Threads
N (c) GPU - 1x

I (d) GPU - 2x

Runtime [s]

Technology

Figure 4: Runtime comparison. Runtimes of the RQA
computations for the full time series of hourly temperature
anomaly data of Potsdam from 1893 to 2011 using different
implementations.

(L), and laminartity (LAM) [1] from the seasonally cor-
rected Potsdamer Klimareihe (anomaly values); using a re-
currence threshold of € = 1 (Euclidean norm). These mea-
sures reflect different aspects of the short-term dynamics;
e.g., predictability.

Our computational approach provides the following ini-
tial observations. We find that all four RQA measures do
not remarkably change for the full period and the sub pe-
riods 1893-1974 and 1975-2011 (see Tab. 3). This re-
sult suggests that, in contrast to the longer time-scales, the
short-term dynamics, including the short-term weather pre-
dictability, has not (yet) changed due to the climate change.
For the period between 1893 and 1974, the warming trend
of the annual mean temperature was 0.46 K per century, but
after 1974 the trend rose to 3.4 K per century (see Fig. 5).

To study the short-term dynamics, we remove the annual
trend (seasonal cycle) from the data by phase averaging,
resulting in an anomaly temperature record. We use a time
delay embedding of dimension m = 5 and delay 7 = 3,
which have been found by false nearest neighbors approach
for finding m [13] as well as a combined autocorrelation
and visual recurrence plot inspection approach for finding
an optimal 7 [14].

Table 3: RQA results for the full time series of hourly tem-
perature anomaly data of Potsdam as well for the two peri-
ods 1893-1974 and 1975-2011.

Measure | 1893-2011 | 1893-1974 | 1975-2011
RR 0.12 0.12 0.13
DET 0.94 0.94 0.94
L 8.4 8.4 8.6
LAM 0.96 0.97 0.96
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Figure 5: Potsdamer Klimareihe. Warming trend for the
periods 1893-1974 and 1975-2011.

4. Conclusion

We present a novel computing approach for conducting
RQA that combines the concepts of D&R with the parallel
computing capabilities of GPUs. Our approach allows to
compute RQA measures for the full Potsdamer Klimareihe
in close to 5 min. A particular challenge is to compute valid
RQA results. Therefore, it is required to share information
between sub matrices, which we solve by introducing car-
ryover buffers.

Our approach offers the following benefits:

e The carryover buffers and the enforcement of specific
processing orders allow to reduce the overall comput-
ing time by utilising multiple GPU devices at the same
time.

e The architectural design of GPU devices enables the
massively parallel detection of vertical and diagonal
lines within a single sub matrix.

e The usage of the OpenCL™ framework allows run-
ning the implementation on a variety of different hard-
ware architectures.

e An implementation of our approach and further in-
formation will soon be available at http://www.
gfz-potsdam.de/fast-rqa.

Acknowledgements

We would like to thank T. Nocke and F.-W. Gerstengarbe
for fruitful discussions and acknowledge support from the
Potsdam Research Cluster for Georisk Analysis, Environ-
mental Change and Sustainability (PROGRESS, support
code 031S2191B).

References

[1] Marwan N, Romano MC, Thiel M, Kurths J. Re-
currence Plots for the Analysis of Complex Systems.
Physics Reports. 2007;438(5-6):237-329.

[2] Marwan N. A Historical Review of Recurrence
Plots. European Physical Journal — Special Topics.
2008;164(1):3-12.

[3] Donges JF, Donner RV, Trauth MH, Marwan N,
Schellnhuber HJ, Kurths J. Nonlinear detection of
paleoclimate-variability transitions possibly related
to human evolution. Proceedings of the National
Academy of Sciences. 2011;108(51):20422-20427.

[4] Goswami B, Marwan N, Feulner G, Kurths J. How
do global temperature drivers influence each other? —
A network perspective using recurrences. European
Physical Journal — Special Topics. 2013;222:861—
873.

[5] Ponyavin DI.
Activity and Climate.
2):465-471.

Solar Cycle Signal in Geomagnetic
Solar Physics. 2005;224(1-

[6] Muller RA, MacDonald GJ. Ice Ages and Astronom-
ical Causes (Springer Praxis Books / Environmental
Sciences). Springer; 2002.

[7] Zbilut JP, Webber Jr CL. Embeddings and delays
as derived from quantification of recurrence plots.
Physics Letters A. 1992;171(3—4):199-203.

[8] Webber Jr CL, Zbilut JP. Dynamical assessment
of physiological systems and states using recur-
rence plot strategies. Journal of Applied Physiology.
1994;76(2):965-973.

[9] Marwan N. CRP Toolbox 5.17; 2013. Platform in-
dependent (for Matlab). Available from: http://
tocsy.pik-potsdam.de/CRPtoolbox.

[10] Webber Jr CL. RQA Software 14.1; 2013. Only for
DOS. Available from: http://homepages.luc.
edu/~cwebber.

[11] Guha S, Hafen R, Rounds J, Xia J, Li J, Xi B, et al.
Large complex data: divide and recombine (D&R)
with RHIPE. Stat. 2012;1(1):53-67.

[12] OpenCL 1.1 Specification; 2010. Available
from: http://www.khronos.org/registry/cl/
specs/opencl-1.1.pdf.

[13] Kennel MB, Brown R, Abarbanel HDI. Determining
embedding dimension for phase-space reconstruction
using a geometrical construction. Physical Review A.
1992;45(6):3403-3411.

[14] Marwan N. How to avoid potential pitfalls in recur-
rence plot based data analysis. International Journal
of Bifurcation and Chaos. 2011;21(4):1003-1017.

- 328 -



