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Abstract

A simple modified-OGY method is presented to control
chaos by which the controlled trajectory can automat-
ically converge to the unknown true target and control
signal becomes almost zero after having controlled chaos.

1. Introduction

In 1990 Ott, Grebogi, and Yorke proposed a novel
method of controlling chaos[1]. The method, now called
the OGY method, stabilizes one of the many unstable
periodic orbits embedded in a chaotic attractor, through
only small time-dependent perturbations in such a way
that when an iterate falls near the desired orbit, the next
iterate will be forced back toward the stable manifold of
the original orbit. The OGY method has attracted the
attention of many researchers interested in applications
of nonlinear dynamics in various fields. Many variants
of this method have appeared in the literature[2].

However, when we apply the OGY method to control
chaos using an estimated fixed-point (or a periodic-orbit)
which has inevitable errors caused by approximation and
noise, there are problems such that the controlled fixed-
point might be slightly different from the true one and
a small amount of control signal must be kept apply-
ing on the system. In 1996 Xu and Bishop proposed a
method for self-locating control of chaotic systems using
Newton algorithm[2]. This method seems to be a gen-
eral and systematic approach for the above-mentioned
problems. We also have conducted research on these
problems independently[4] apart from the method of Xu
and Bishop. Our method is based on the observation
of graphical properties of the OGY method and simple,
although at present it is not as general as the Xu and
Bishop’s method

In this paper, we show a simple modified-OGY method
to control chaos by which the chaotic system can auto-
matically converge to the unknown true target and the
control signal becomes very small after having controlled
chaos. To improve the estimations of the fixed-point we

use a Newton-like method which is very different from
the one Xu and Bishop employed. The Radial Basis
Function (RBF) with parsimonious error criterion[3] is
also utilized to obtain a good initial estimation of the
fixed point and the Jacobian from time-series data with
observation noise.

2. The OGY method

The method of OGY[1] is briefly summerized in this
section. This method is based on the observation that
unstable periodic orbits are dense in a chaotic attractor.
The method assumes that the dynamics of the system
can be represented by a k-dimensional nonlinear map
(e.g., by a surface of section or time one return map)

x(t + 1) = f(x(t), p) x(t) ∈ Rk (1)

where x(t) is the state of the system at a discrete time t

and p is some accessible system parameter. We suppose
that the parameter p can be varied in a small range about
some nominal value p∗ but that the local dynamics about
it do not vary much with the small change in p. Let
xF (p∗) be the unstable fixed point for p∗ on the attractor
which one wants to stabilize. We change p slightly from
p∗ to p′. Then the fixed point will shift to a new position
xF (p′). For small perturbation p′ − p∗, we approximate

g ≡
∂f

∂p

∣

∣

∣

xF(p∗)

≈
xF (p′) − xF (p∗)

p′ − p∗
(2)

, which allows an experimental determination of the vec-
tor g. We assume g does not vary much with the small
change in p. Near the fixed point xF (p), we can use a
linear approximation

x(t + 1) − xF (p) ≈ J(x(t) − xF (p)) (3)

where J is the Jacobian matrix J ≡
∂f
∂x

∣

∣

∣

xF (p∗)

. We

assumed J does not vary much with the small change
around p∗. Let δx(t) = x(t) − xF (p∗), δp = p − p∗.
From Eq.(2) and its assumption we can write xF (p) ≈
xF (p∗) + δpg. Using these relations we can recast Eq.(3)

δx(t + 1) − δpg ≈ J(δx(t) − δpg) . (4)



To simplify explanation we consider two-dimensional dis-
crete dynamical systems. In this case

J = λueuvu + λsesvs (5)

with eu(es) the unstable(stable) eigendirections of J

with eigenvalues λu(λs) and vu(vs) their contravariant
basis vectors, i.e.,

vueu = vses = 1, vues = vseu = 0 . (6)

The condition that x(t + 1) falls on the local stable
manifold of the fixed point xF (p∗) can be formulated as
vuδx(t + 1) = 0 , which yields the control formula[1] for
the new value of the control parameter p = p∗ + δp(t),

δp(t) =
λu

λu − 1

vu

vug
δx(t) . (7)

The parameter perturbations are activated only if δx(t)
falls in sufficiently small neighborhood of the fixed point
and δp(t) is less than the maximal allowed disturbance
δpmax; otherwise δp(t) is set to 0.

3. Radial basis functions (RBF)

We use the parsimonious RBF method presented by
Mees[3]. We simply call this method the parsimonious
RBF. We are given a set of pairs {(yi, xi)} (i = 1, ..., T )
where it is assumed that

yi = f (xi), xi ∈ R
k, yi ∈ R

k, (i = 1, · · · , T ) . (8)

Consider how to find approximation f̂ = {f̂l(x)} to f .
The parsimonious RBF uses the ARB(affine plus radial
basis) model

f̂l(x) = αl · x + βl +

N
∑

j=1

λljφ(|x − cj|) (9)

with an affine term αl ·x+βl (l = 1, · · · , k) , a given ra-
dial basis function φ and given centers of the RBF {cj},
j = 1, . . . , N . In this paper we use the cubic function
φ(r) = r3 for the radial basis function.

To determine a good model size (the number of pa-
rameters in Eq.(9 )), the parsimonious RBF uses the
Schwarz Criterion

SIC(m) = T log

(

ε2
m

T

)

+ m log(T ) (10)

where m denotes the mth stage of the orthogonalization
process, εm the error vector at this stage and T the
number of data. The number m (denoted by M) that
gives the minimum in the SIC(m) curve should define a
good model size and gives the stopping condition in the
orthogonalization process.

4. An algorithm for automatic correction
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Fig. 1-a Iterated estimations of the fixed point for
Ikeda map
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Fig. 1-b Iterated estimations of the fixed point for
Z-type Map

The conventional OGY method uses an estimated
fixed-point for a control paramater value p∗ without
improving the estimation. In the proposed method the
estimation of the fixed-point is automatically improved
during the OGY controlling process. A prototype
solution for this problem was given in [4]. In this paper
we develop a method to accelerate the convergence to
the exact fixed-point by using a Newton-like method.

We assume that the local dynamics about the fixed-
point do not vary much with the allowed small changes in
control parameter p as in the conventional OGY. We em-
ploy the parsimonious RBF to construct k-dimensional
nonlinear map xn+1 = f (xn, p) using observed data
from the chaotic system. Our method is based on the
facts that were observed in numerical experiments of the
conventional OGY method. These facts are in the fol-
lowings:

(1) The initially estimated fixed-point xe0 is slightly dif-
ferent from the true one xf as shown in Figure 1-a
and Figure 1-b. Using xe0 as a control target the
OGY stabilize the system at a point xc0 that be-
comes a new estimation xe1 for the fixed-point. Ob-
serve that the point xe1 is on the line through xf



0.592 0.594 0.596 0.598 0.6 0.602 0.604 0.606 0.608 0.61

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

|x
e−

xc
|

x component of xe

Fig. 2-a Characteristic of |xe − xc| vs. x-component of
xe for Ikeda map
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Fig. 2-b Characteristic of |xe − xc| vs. x-component of
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(see the Figures) and the slope of the line is given
by the slope vector g in [1]. Observations show that
iterated estimations xei are all on the line but not
converge to the true xf .

(2) Near the true fixed point, plotting the difference
between xe and its corresponding xc versus x-
component of xe shows a smooth curve near the
fixed-point as shown in Figure 2-a and Figure 2-
b. Close-up of these figures near the fixed-point is
shown in Figure 3-a and Figure 3-b (thin curves).
Note that the ”zero” point of the curve is the true
fixed-point.

From the above observations, it seems that we can
precisely estimate the true fixed point. However, we
don’t know the precise function of the curve before-
hand. Hence we approximate the curve by straight line
determined by two points at each iterate: the point
(|xei−xci|, x-component of xei) and a close correspond-
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Fig. 3-a Characteristic of |xe − xc| vs. x-component of
xe closed up near the fixed point for Ikeda map
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Fig. 3-b Characteristic of |xe − xc| vs. x-component of
xe closed up near the fixed point for Z-type map

ing point on the curve (see thick lines in Figure 3-a and
Figure 3-b). The intersection of the line with the abscissa
gives a new approximation of xf . This iterated improve-
ment is almost the same with the Newton method that
has the second order convergence rate, and very simple.

5. Numerical examples

Numerical experiments are performed to verify the ef-
fectiveness of the proposed method. We consider the
following two examples which are 2-dimensional discrete
maps with accessible control parameter perturbation p:
Example A: Ikeda Map

x(t + 1) = a(t) + b(x(t) cos(d) − y(t) sin(d))

y(t + 1) = b(x(t) sin(d) + y(t) cos(d))

where
d = 0.4 − 6

(1+x2(t)+y2(t))

a(t) = a0 + p(t), a0 = 1.0, b = 0.7.
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Fig. 4-a A time series of x(t) and the time history of
control-parameter perturbation p(t) for Ikeda map

Table 1-a Errors of controlled fixed-points and
perturbations for Ikeda map with noise

noise 0.5% 1.0%

conventional method’s xf 7.2655e-004 1.4686e-003

proposed method’s xf 5.7150e-012 2.6865e-012

conventional method’s p(t) 2.9752e-003 6.9085e-002

proposed method’s p(t) -6.3600e-013 4.7398e-012

Example B: Z-type Map

x(t + 1) = ax(t) − x(t)3 + y(t) + c(t)

y(t + 1) = bx(t)

with c(t) = p∗ + p(t), p∗ = 0, a = 1.9, b = 0.5 .
As a preparatory step for controlling chaos, we recon-

struct 2-dimensional map f̂ from observed time series
data {x(t), y(t)} using the parsimonious RBF, and find
an initial estimation of the aimed fixed-point, the Jaco-
bian J and gradient g around the fixed-point. Next we
apply the OGY method to control chaos using updated
estimations of the fixed-point presented in Section 4.

Figure 4-a and Figure 4-b show time series of x(t) and
the time history of control-parameter perturbation p(t)
for both Ikeda map and Z-type map respectively. Note
that the present method gives very small perturbation af-
ter having controlled while the conventional OGY keeps
applying perturbation even after having control.

Table 1-a and Table 1-b show the control of chaos gen-
erated by Ikeda map and Z-type map respectively with
additional observation noise. Note that the proposed
method can control chaos into the true target very pre-
cisely within the error order 10−12 and control parame-
ter input p(t) is very small (within the order 10−13) after
completion of control.
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Fig. 4-b A time series of x(t) and the time history of
control-parameter perturbation p(t) for Z-type Map

Table 1-b Errors of controlled fixed-points and
perturbations for Z-type map with noise

noise 0.5% 1.0%
conventional method’s xf 5.3352e-003 7.5311e-003

proposed method’s xf 4.8558e-013 5.7710e-013

conventional method’s p(t) 5.3352e-003 8.1278e-003

proposed method’s p(t) 2.6426e-014 -7.5797e-013

6. Conclusions

We have presented a simple modified-OGY method
to control chaos. The method enables chaotic systems
to automatically converge to the exact fixed point at
the given control-parameter p∗. Numerical experiments
show that the proposed method is very effective for 2-
dimensional discrete maps. Extension of this method to
higher-dimensional case and plural control parameters
case remains as future works.
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