IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 16 of 16  /   
Committee Date Time Place Paper Title / Authors Abstract Paper #
RCS 2021-04-23
09:45
Online Online Improving Classification Accuracy in Multi-User Communication Environment Information Estimation by Machine Learning
Shun Kojima (Utsunomiya Univ.), Yi Feng (Duke Univ.), Kazuki Maruta (Tokyo Tech.), Chang-Jun Ahn (Chiba Univ.), Vahid Tarokh (Duke Univ.) RCS2021-10
Recently, due to the increasing demand for wireless data traffic, highly efficient multiple access methods such as OFDMA... [more] RCS2021-10
pp.42-47
SIP, IT, RCS 2021-01-22
15:15
Online Online A Study on the Possibility of Estimating Multiple Communication Environment Information by Deep Learning Method Using Received Signal Spectrogram
Shun Kojima (Chiba Univ.), Kazuki Maruta (Tokyo Tech.), Chang-Jun Ahn (Chiba Univ.) IT2020-97 SIP2020-75 RCS2020-188
In the next generation mobile radio communication systems, it is essential to obtain the communication environment infor... [more] IT2020-97 SIP2020-75 RCS2020-188
pp.188-193
NS, RCS
(Joint)
2020-12-18
15:50
Online Online K-Factor Estimation based on Spectrogram Images by Convolutional Neural Network
Shun Kojima, Kosuke Shima (Chiba Univ.), Kazuki Maruta (Tokyo Tech), Chang-Jun Ahn (Chiba Univ.) RCS2020-153
In the next generation mobile communications systems, accurate and fast acquisition of the communication environment is ... [more] RCS2020-153
pp.103-108
SR, NS, SeMI, RCC, RCS
(Joint)
2020-07-08
10:00
Online Online Evaluation of Processing Speed and Throughput in CNN-based Communication Environment Estimation Method using Spectrograms
Shun Kojima (Chiba Univ.), Kazuki Maruta (Tokyo Tech), Chang-Jun Ahn (Chiba Univ.) RCS2020-58
 [more] RCS2020-58
pp.1-6
SR, NS, SeMI, RCC, RCS
(Joint)
2020-07-09
15:00
Online Online [Invited Lecture] Blind Adaptive Array Interference Suppression Performance with Deep Learning based SIR Estimation
Kazuki Maruta (Tokyo Tech), Shun Kojima (Chiba Univ.), Daisuke Hisano (Osaka Univ.), Yu Nakayama (TUAT) RCC2020-8 NS2020-37 RCS2020-71 SR2020-16 SeMI2020-8
This paper proposes a blind interference estimation via deep learning approach exploiting the visualized wireless signal... [more] RCC2020-8 NS2020-37 RCS2020-71 SR2020-16 SeMI2020-8
pp.37-41(RCC), pp.37-41(NS), pp.79-83(RCS), pp.43-47(SR), pp.31-35(SeMI)
RCS 2020-04-23
11:45
Online Online Deep Learning based Joint SNR and Doppler Shift Detection using Multiuser Spectrogram
Shun Kojima (Chiba Univ.), Yi Feng (Duke Univ.), Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.), Vahid Tarokh (Duke Univ.) RCS2020-4
 [more] RCS2020-4
pp.19-24
RCS 2019-10-24
09:30
Kanagawa Yokosuka Research Park SNR estimation method using convolutional neural network
Shun Kojima, Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.) RCS2019-178
 [more] RCS2019-178
pp.1-6
MIKA
(2nd)
2019-10-03
13:05
Hokkaido Hokkaido Univ. [Invited Lecture] Deep Learning Based Communication Environment Estimation Using Received Signals
Kazuki Maruta, Shun Kojima, Chang-Jun Ahn (Chiba Univ.)
The performance of wireless communication greatly depends on the propagation environment.
Adaptive modulation and codi... [more]

CQ
(2nd)
2019-09-05
10:40
Tokyo Inter-University Seminar House [Poster Presentation] The estimation method of SNR and Doppler frequency by convolutional neural network using spectrogram
Shun Kojima, Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.)
 [more]
SeMI, RCS, NS, SR, RCC
(Joint)
2019-07-11
10:40
Osaka I-Site Nanba(Osaka) [Poster Presentation] Blind SIR Estimation by Deep Learning Using Visualized Wireless Signal Information
Kazuki Maruta, Shun Kojima (Chiba Univ.), Yu Nakayama (TUAT), Daisuke Hisano (Osaka Univ.), Chang-Jun Ahn (Chiba Univ.) RCC2019-27 NS2019-63 RCS2019-120 SR2019-39 SeMI2019-36
This article proposes the blind interference estimation via deep learning approach exploiting the visualized wireless si... [more] RCC2019-27 NS2019-63 RCS2019-120 SR2019-39 SeMI2019-36
pp.85-86(RCC), pp.111-112(NS), pp.107-108(RCS), pp.117-118(SR), pp.99-100(SeMI)
SeMI, RCS, NS, SR, RCC
(Joint)
2019-07-11
13:30
Osaka I-Site Nanba(Osaka) SNR estimation method using convolutional neural network
Shun Kojima, Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.) RCC2019-38 NS2019-74 RCS2019-131 SR2019-50 SeMI2019-47
This paper proposes a novel Adaptive Modulation and Coding (AMC) scheme enabled by Convolutional Neural Network (CNN) ai... [more] RCC2019-38 NS2019-74 RCS2019-131 SR2019-50 SeMI2019-47
pp.127-132(RCC), pp.153-158(NS), pp.149-154(RCS), pp.159-164(SR), pp.141-146(SeMI)
RCS 2019-06-21
11:40
Okinawa Miyakojima Hirara Port Terminal Building SNR Estimation by using Neural Network in Adaptive Modulation and Coding
Shun Kojima, Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.) RCS2019-94
This paper proposes a novel Adaptive Modulation and Coding (AMC) scheme enabled by Artificial
Neural Network (ANN) aide... [more]
RCS2019-94
pp.333-338
RCS 2018-10-19
09:30
Tokyo Kikai-Shinko-Kaikan Bldg. Adaptive Switching Method with AMC and FSS
Shun Kojima, Kazuki Maruta, Chang-Jun Ahn (Chiba Univ.) RCS2018-164
In recent years, it is required to realize higher speed and higher quality mobile communication due to the increase in I... [more] RCS2018-164
pp.71-76
SP, IPSJ-MUS 2014-05-25
11:30
Tokyo   Evaluation of singing voice similarity based on "acoustic singing-structure"
Shun Kojima, Takeshi Saitou, Masato Miyoshi (Kanazawa Univ.) SP2014-29
In this paper, we investigate the acoustic characteristics affecting auditory impressions, a "vocal timbre" and a "way o... [more] SP2014-29
pp.315-319
EA 2012-10-27
14:15
Toyama USHIDAKE resort (Toyama) [Poster Presentation] Acoustic features for discriminating falsetto from modal registers in singing voices
Shun Kojima, Takeshi Saitou (Kanazawa Univ.), Tomoyasu Nakano, Masataka Goto (AIST), Masato Miyoshi (Kanazawa Univ.) EA2012-76
This paper reports an investigation of effective acoustic features for discriminating falsetto register and modal regist... [more] EA2012-76
pp.67-72
SP 2012-03-09
10:30
Saitama Riken Brain Science Institute Relation between acoustic features and impression evaluation in singing voices.
Shun Kojima, Takeshi Saitou, Masato Miyoshi (Kanazawa Univ.) SP2011-164
As expression denoting several characteristics of singing voices, there are impression words like vocal timbre and singi... [more] SP2011-164
pp.49-53
 Results 1 - 16 of 16  /   
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan