IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 20 of 49  /  [Next]  
Committee Date Time Place Paper Title / Authors Abstract Paper #
MI, MICT [detail] 2021-11-05
15:30
Online Online(planned) Respiratory Sound Classification Based on Wavelet Scattering Transform and CRNN
Naoki Asatani, Huimin Lu, Tohru Kamiya (KIT), Shingo Mabu (Yamaguchi Univ.), Shoji Kido (Osaka Univ.)
 [more]
MI 2021-08-27
15:00
Online Online [Short Paper] Region extraction and mass estimation of kidneys from Ai-CT
Yasushi Hirano, Remi Yamashita (Yamaguchi Univ.), Shoji Kido (Osaka Univ.), Kunihiro Inai (Univ. of Fukui) MI2021-24
Autopsy imaging (Ai) is an examination method for investigating the cause of death and estimating the postmortem time. S... [more] MI2021-24
pp.10-11
MI 2021-03-16
15:00
Online Online Automatic Classification of Respiratory Sounds using HPSS
Yuki Marubashi, Tohru Kamiya (KIT), Shingo Mabu (YU), Shoji Kido (OU) MI2020-77
In this paper, we propose a new automatic classification method of respiratory sounds to support the diagnosis of respir... [more] MI2020-77
pp.128-133
MI 2021-03-17
14:15
Online Online Super-resolution of thoracic CT volumes using high-frequency learning
Ryosuke Kawai, Atsushi Saito (TUAT), Shoji Kido (Osaka Univ), Kunihiro Inai, Hirohiko Kimura (Fukui Univ), Akinobu Shimizu (TUAT) MI2020-97
We report the results of super-resolution using a new network model. Specifically, the reconstructed image is represente... [more] MI2020-97
pp.218-219
IE, IMQ, MVE, CQ
(Joint) [detail]
2020-03-05
10:10
Fukuoka Kyushu Institute of Technology
(Cancelled but technical report was issued)
Automatic Classification of Respiratory Sounds Based on CNN Considering Time Series Information
Naoki Asatani, Huimin Lu, Hyoungseop Kim (KIT), Shingo Mabu (Yamaguchi Univ.), Shoji Kido (Osaka Univ.) IMQ2019-15 IE2019-97 MVE2019-36
 [more] IMQ2019-15 IE2019-97 MVE2019-36
pp.9-10
IE, IMQ, MVE, CQ
(Joint) [detail]
2020-03-05
17:05
Fukuoka Kyushu Institute of Technology
(Cancelled but technical report was issued)
[Invited Talk] Image Registration Method for Comparative Reading
Hyoungseop Kim, Huimin Lu (KIT), Takatoshi Aoki (UOEH), Shoji Kido (Osaka Univ) IMQ2019-28 CQ2019-134 IE2019-110 MVE2019-49
Image registration techniques are used not only medical fields but also in various fields such as positioning problems o... [more] IMQ2019-28 CQ2019-134 IE2019-110 MVE2019-49
pp.69-72(IMQ), pp.1-4(CQ), pp.69-72(IE), pp.69-72(MVE)
MI 2020-01-29
13:20
Okinawa OKINAWAKEN SEINENKAIKAN [Poster Presentation] Detection of lung nodules on CT images by use of YOLO
Xu Chen, Yasushi Hirano (Yamaguchi Univ.), Shoji Kido (Osaka Univ.) MI2019-78
The number of deaths caused by lung cancer in Japan is relatively high for both men and women. Chest CT screening has be... [more] MI2019-78
pp.61-65
MI 2020-01-30
11:10
Okinawa OKINAWAKEN SEINENKAIKAN [Short Paper] Improvement of super-resolution of a thoracic CT volume by a simultaneous process with anatomical segmentation
Katsuki Tozawa, Atsushi Saito (TUAT), Shoji Kido (Osaka University), Yasushi Hirano (Yamaguchi University), Kunihiro Inai, Hirohiko Kimura (University of Fukui), Akinobu Shimizu (TUAT) MI2019-104
 [more] MI2019-104
pp.175-176
MBE, NC 2019-10-11
15:00
Miyagi   Analysis of diffuse lung disease shadows using Bolasso feature selection method
Akihiro Endo (UEC), Kenji Nagata (NIMS), Shoji Kido (Osaka Univ.), Hayaru Shouno (UEC) MBE2019-33 NC2019-24
Diffuse lung disease is an intractable disease and abnormal shadows appear on lung X-ray CT images.
Since various patte... [more]
MBE2019-33 NC2019-24
pp.23-27
MI 2019-01-22
09:50
Okinawa   [Short Paper] Improvement of super-resolution process of a lung micro CT volume by generative adversarial network
Katsuki Tozawa, Atsushi Saito (Tokyo University of Agriculture and Technology), Shoji Kido (Yamaguchi Univ.), Kunihiro Inai, Hirohiko Kimura (University of Fukui), Akinobu Shimizu (Tokyo University of Agriculture and Technology) MI2018-60
(To be available after the conference date) [more] MI2018-60
pp.5-6
MI 2019-01-22
15:35
Okinawa   Segmentation of lung nodules on 3D CT images by using DeconvNet and V-Net
Shunsuke Kidera, Shoji Kido, Yasushi Hirano (Yamaguchi Univ.), Nobuyuki Tanaka (Saiseikai Hosp) MI2018-85
Semantic segmentation of lung nodules is important for texture analysis. However, manual segmentation needs a lot of tim... [more] MI2018-85
pp.103-106
MI 2019-01-23
14:00
Okinawa   Segmentation for diffuse lung disease opacities on CT images using U-Net and residual U-Net
Kanako Murakami, Shoji Kido, Yasushi Hirano, Shingo Mabu (Yamaguchi Univ.), Kenji Kondo (AIST/Panasonic), Jun Ozawa (AIST) MI2018-102
Segmentation is important for diagnosis of diffuse lung diseases (DLD) as same as classification. In recent years, a lot... [more] MI2018-102
pp.175-179
MI 2018-09-28
15:20
Tokyo Tokyo Women's Medical University Estimation of postmortem time for CT images by using texture analysis
Yasushi Hirano, Shoji Kido (Yamaguchi Univ.), Kazuyuki Kinoshita, Kunihiro Inai, Sakon Noriki (Univ. of Fukui) MI2018-35
The dissection rate for dead human bodies with suspicious death is about 11% in Japan. This rate is markedly lower than ... [more] MI2018-35
pp.11-15
MI 2018-07-24
14:35
Iwate aiina (Morioka, Iwate) Estimation of postmortem time for Ai-CT images by using Deep Learning
Shota Chai, Yasushi Hirano, Shoji Kido (Yamaguchi Univ.), Kazuyuki Kinoshita, Kunihiro Inai, Sakon Noriki (Univ. of Fukui) MI2018-28
Although estimation of postmortem time is important for criminal investigation or sudden in-hospital death in the middle... [more] MI2018-28
pp.33-37
IE, ITE-ME, IPSJ-AVM, ITE-CE [detail] 2016-08-08
13:30
Fukuoka  
Kazuki Hirayama, Joo Kooi Tan, Hyoungseop Kim (KIT), Takatoshi Aoki (UOEH), Shoji Kido (YU) IE2016-47
Recently, the development of CAD (Computer Aided Diagnosis) system for the purpose of reducing the burden to the physici... [more] IE2016-47
pp.17-20
MI 2016-01-20
10:32
Okinawa Bunka Tenbusu Kan A general method to decide pulmonary regions for analysis of diffuse lung diseases in CT images obtained from many hospitals
Kyohei Karasawa, Yasushi Hirano, Shoji Kido (Yamaguchi Univ.), Kazuki Kozuka (Panasonic)
 [more]
MI 2015-09-08
14:00
Tokyo Univ. of Electro-communications Feature Selection for Diffuse Lung Disease using MCMC Method
Makoto Koiwai (UEC), Maki Isogai (Info Techno Asahi), Hayaru Shouno (UEC), Shoji Kido (Yamaguchi Univ.) MI2015-52
(To be available after the conference date) [more] MI2015-52
pp.19-24
NC, MBE 2015-03-16
10:55
Tokyo Tamagawa University Feature Analysis for Diffuse Lung Disease with Deep Convolutional Neural Network
Satoshi Suzuki, Hayaru Shouno (UEC), Shoji Kido (Yamaguchi Univ.) MBE2014-163 NC2014-114
The computer aided diagnosis (CAD) system is desired to develop for supporing physicians to diagnose the diffuse lung di... [more] MBE2014-163 NC2014-114
pp.259-264
MI 2015-03-02
11:18
Okinawa Hotel Miyahira Setting of Volume-of-Interests of Pattern Classification for Diffuse Lung Diseases using Watershed algorithm on CT images
Yumi Takeshita (Yamaguchi Univ.), Rie Tachibana (OCMT), Yasushi Hirano, Shoji Kido (Yamaguchi Univ.) MI2014-63
We propose a method for the classification of seven kinds of diffuse lung disease patterns with arbitrary region of inte... [more] MI2014-63
pp.55-58
MI 2015-03-02
16:48
Okinawa Hotel Miyahira Decision of Pulmonary Areas of Thoracic CT Images by use of Anatomical Structures and Pulmonary Textures
Kyohei Karasawa, Yasushi Hirano, Shoji Kido (Yamaguchi Univ.), Kazuki Kozuka (Panasonic) MI2014-87
In order to analyze diffuse lung diseases in the thoracic CT images by computer-aided diagnosis (CAD) systems, it is nec... [more] MI2014-87
pp.157-160
 Results 1 - 20 of 49  /  [Next]  
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan