IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
... (for ESS/CS/ES/ISS)
Tech. Rep. Archives
... (for ES/CS)
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 20 of 76  /  [Next]  
Committee Date Time Place Paper Title / Authors Abstract Paper #
SIP, MI, IE 2019-05-24
15:15
Aichi   On the influence of data augmentation and network structures in bleeding detection from brain CT images using deep learning
Zhongyang Lu, Masahiro Oda, Tong Zheng, Chen Shen, Tao Hu (Graduate School of Informatics, Nagoya Univ), Takeyuki Watadani, Osamu Abe (Department of Radiology,The University of Tokyo Hospital), Masahiro Hashimoto, Masahiro Jinzaki (Department of Radiology,Keio University School of Medicine), Kensaku Mori (Graduate School of Informatics, Nagoya Univ)
Based on deep learning technique, the performance of image classification has made great progress. However, their state-... [more] SIP2019-15 IE2019-15 MI2019-15
pp.65-70
MI 2019-01-22
10:05
Okinawa   Super-resolution of μCT image about dissected lung tissue using Adversarial Dense U-net
Tong Zheng, Hirohisa Oda, Holger R. Roth, Masahiro Oda, Shota Nakamura (Nagoya University), Kensaku Mori (Nagoya University/NII)
μCT images capture three dimensional structures of tissues with a very high resolution of 100 micrometer or smaller. fin... [more] MI2018-61
pp.7-12
MI 2019-01-22
13:20
Okinawa   Deep learning-based segmentation of head anatomical structures using multi-modal images -- Segmentation accuracy validation for training on a small amount of image data --
Takaaki Sugino, Holger R. Roth, Masahiro Oda (Nagoya Univ.), Taichi kin (Univ. of Tokyo), Kensaku Mori (Nagoya Univ.)
This paper proposes a fully convolutional network-based method for segmenting head anatomical structures from multi-moda... [more] MI2018-77
pp.65-70
MI 2019-01-22
15:20
Okinawa   A Study on Automated Lymph Node Matching Method Considering Abdominal Organs Deformation in Follow-up CT Volumes
Tachi Koki, Masahiro Oda, Yuichiro Hayashi, Hayato Itoh (Nagoya Univ.), Yoshihiko Nakamura (TNT), Takayuki Kitasaka (AIT), Kazunari Misawa (ACC), Kensaku Mori (Nagoya Univ.)
In this paper, we report on an automated lymph node matching method considering deformation of abdominal organs in follo... [more] MI2018-84
pp.97-102
MI 2019-01-23
09:45
Okinawa   Feature Selection from Imbalanced Data -- Pathological Pattern Classification in Endocytoscopic Images --
Hayato Itoh (Nagoya Univ.), Yuichi Mori, Masashi Misawa (Showa Univ.), Masahiro Oda (Nagoya Univ.), Shin-Ei Kudo (Showa Univ.), Kensaku Mori (Nagoya Univ.)
Endocytoscope gives ultramagnified observation that enables physicians to achieve minimally invasive and real-time diagn... [more] MI2018-87
pp.109-114
MI 2019-01-23
11:40
Okinawa   Influence of group normalization in multi-class organ segmentation of abdominal CT volumes
Chen Shen (Nagoya Univ.), Fausto Milletari, Holger R. Roth (Nvidia), Hirohisa Oda, Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Center Hospital), Kensaku Mori (Nagoya Univ.)
Organ segmentation is one of the most important branches of medical image analysis. Fully convolutional networks (FCNs) ... [more] MI2018-94
pp.143-148
MI 2019-01-23
14:00
Okinawa   Study on Automated Labeling of Abdominal Arteries Using Machine Learning with Data Augmentation
Yusuke Tetsumura, Yuichiro Hayashi, Masahiro Oda (Nagoya Univ), Takayuki Kitasaka (AIT), Kazunari Misawa (ACC), Kensaku Mori (Nagoya Univ)
In this paper, we improve automated anatomical labeling accuracy for the abdominal arteries by introducing data augmenta... [more] MI2018-106
pp.191-196
MI 2019-01-23
15:10
Okinawa   Report on MICCAI 2018
Masahiro Oda (Nagoya Univ.), Yoshito Otake (NAIST), Hayato Ito, Takaaki Sugino (Nagoya Univ.), Atsushi Saito (TUAT), Ryo Furukawa (Hiroshima City Univ.), Takashi Onishi, Atsushi Imiya (Chiba Univ.), Kensaku Mori (Nagoya Univ.)
In this paper, the outlines of MICCAI 2018 main conference sessions and workshops are introduced. A few interesting repo... [more] MI2018-111
pp.221-228
MICT, MI 2018-11-06
11:00
Hyogo University of Hyogo Investigation on the condition of using adjacent reconstruction in visual bronchoscope tracking
Cheng Wang, Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Takayuki Kitasaka (Aichi Inst. Univ.), Hirotoshi Honma (Sapporo Kosei General Hosp.), Hirotsugu Takabatake (Sapporo Minami Sanjo Hosp.), Masaki Mori (Sapporo Kosei General Hosp.), Hiroshi Natori (Keiwakai Nishioka Hosp.), Kensaku Mori (Nagoya Univ.)
This paper reports the condition of using adjacent reconstruction during SLAM-based visual bronchoscope tracking. Visual... [more] MICT2018-43 MI2018-43
pp.27-32
MI 2018-07-24
11:05
Iwate aiina (Morioka, Iwate) Investigation of extracting interlobular septa with Radial Structure Tensor (RST) in micro-CT images
Xiaotian Zhao, Holger R. Roth, Shota Nakamura, Hirohisa Oda, Yuichiro Hayashi, Takayasu Moriya, Kai Nagara, Masahiro Oda, Kensaku Mori (Nagoya Univ.)
With the advent of Micro-CT, it is expected that the three-dimensional microstructure analyses of the vital specimen may... [more] MI2018-24
pp.11-16
SIP, EA, SP, MI
(Joint) [detail]
2018-03-19
10:05
Okinawa   A preliminary study on unsupervised registration with deep learning
Kai Nagara, Holger R. Roth, Shota Nakamura, Masahiro Oda, Kensaku Mori (Nagoya Univ.)
Registration is one of the important processes in medical image processing. Many researchers have proposed methods for r... [more] MI2017-65
pp.7-12
SIP, EA, SP, MI
(Joint) [detail]
2018-03-19
15:25
Okinawa   Feature-selection method based on Grassmann distance for the classification of neoplastic polyps on endocytoscopic images
Hayato Itoh (Nagoya Univ.), Yuichi Mori, Masashi Misawa (Showa Univ.), Masahiro Oda (Nagoya Univ.), Shin-ei Kudo (Showa Univ.), Kensaku Mori (Nagoya Univ.)
An endocytoscope provides ultramagnified observation that enable physicians to achieve minimally invasive and real-time ... [more] MI2017-81
pp.51-56
SIP, EA, SP, MI
(Joint) [detail]
2018-03-20
10:15
Okinawa   Automated Multi-Organ Segmentation from CT Volumes Based on 3D U-Net and Fully Connected CRF using Geodesic Distance Kernel
Ying Yang, Holger Roth, Masahiro Oda (Naogoya Univ.), Takayuki Kitasaka (Aichi Inst. of Tech.), Kazunari Misawa (Aichi Cancer Center), Kensaku Mori (Naogoya Univ.)
 [more] MI2017-88
pp.75-80
SIP, EA, SP, MI
(Joint) [detail]
2018-03-20
10:30
Okinawa   A preliminary study on organ region localization using regression CNN
Natsuki Shimizu, Masahiro Oda, Holger R. Roth, Yuichiro Hayashi (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Center Hospital), Michitaka Fujiwara, Kensaku Mori (Nagoya Univ.)
Recently, three dimensional CT volumes are widely used in treatment and diagnosis. Development of a computer-aided diagn... [more] MI2017-89
pp.81-86
SIP, EA, SP, MI
(Joint) [detail]
2018-03-20
13:30
Okinawa   Quantitative Evaluation of Organ Surface Reconstruction from Stereo Laparoscopic Images
Mutsumi Shibata, Yuichiro Hayashi, Masahiro Oda (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Central Center Hospital), Kensaku Mori (Nagoya Univ.)
In this paper, we report evaluation results of the organ surface reconstruction method from stereo laparoscopic images. ... [more] MI2017-99
pp.117-122
SIP, EA, SP, MI
(Joint) [detail]
2018-03-20
15:20
Okinawa   Report on MICCAI2017
Yoshito Otake (NAIST), Koichi Ito (Tohoku Univ.), Masahiro Oda (Nagoya Univ.), Ryoma Bise, Ken'ichi Morooka (Kyushu Univ.), Zhou Xiangrong (Gifu Univ.), Atsushi Saito, Akinobu Shimizu (TUAT), Yoshitaka Masutani (Hiroshima City Univ.), Yoshinobu Sato (NAIST), Kensaku Mori (Nagoya Univ.)
 [more] MI2017-101
pp.125-131
MI, MICT 2017-11-06
10:40
Kagawa Sunport Hall Takamatsu On the influence of Dice loss function in multi-class organ segmentation of abdominal CT using 3D fully convolutional networks
Chen Shen, Holger R. Roth, Hirohisa Oda, Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Central Center Hospital), Kensaku Mori (Nagoya Univ.)
Deep learning-based methods achieved impressive results in segmentations from medical images. With the development of 3D... [more] MICT2017-29 MI2017-51
pp.15-20
MI, MICT 2017-11-06
14:50
Kagawa Sunport Hall Takamatsu Study on Robustness of ORB-SLAM Based Outlier Elimination in Bronchoscope Tracking -- RANSAC + EPnP for Outlier Detection --
Cheng Wang, Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Hirotoshi Honma (Sapporo-Kosei General Hospital), Hirotsugu Takabatake (Sapporo-Minami-Sanjo Hospital), Masaki Mori (Sapporo-Kosei General Hospital), Hiroshi Natori (Keiwakai Nishioka Hospital), Kensaku Mori (Nagoya Univ.)
In this paper, we investigate the robustness of outlier removal in posture tracking of bronchoscope based on ORB-SLAM. O... [more] MICT2017-36 MI2017-58
pp.47-52
MI 2017-09-25
15:30
Chiba Chiba Univ. Classification of neoplasia and non-neoplasia for colon endocytoscopic images by convolutional neural network
Hayato Itoh (Nagoya Univ.), Yuichi Mori, Masashi Misawa (Showa Univ.), Masahiro Oda (Nagoya Univ.), Shin-ei Kudo (Showa Univ.), Kensaku Mori (Nagoya Univ.)
Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified obser... [more] MI2017-44
pp.17-21
PRMU, BioX 2017-03-21
10:00
Aichi   [Short Paper] Bile duct segmentation from 3D CT image based on machine learning and probability map-assisted region growing
Pengfei Chen, Hiroshi Tanaka, Masahiro Oda, Holger Roth, Tsuyoshi Igami, Masato Nagino, Kensaku Mori (NU)
In this paper, we present our study on the bile duct segmentation from 3D CT volumes. In hepatobiliary surgery, it is re... [more] BioX2016-55 PRMU2016-218
pp.135-136
 Results 1 - 20 of 76  /  [Next]  
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan