お知らせ 研究会の開催と会場に参加される皆様へのお願い(2020年10月開催~)
電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
[ログイン]
技報アーカイブ
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2020-02-16 14:45
ユーザ反応時間に基づくメディア企業SNSアカウントの傾向分析
榊 剛史ホットリンク)・鳥海不二夫東大NLC2019-37
抄録 (和) 近年,ウェブ・SNSの普及による情報発信・拡散の変化に伴い,デマやフェイクニュースの拡散,エコーチェンバーの発生等,情報拡散にまつわる様々な問題のある現象が顕在化している.このような状況において,情報・情報発信元の信頼性やバイアスを評価する技術が発達しつつある.本研究では,情報発信元(以下,メディア)の質の一つとして,その扇動性に着目し,それを評価する定量的な指標を提案することを目指す.各メディアの情報を拡散するユーザの反応時間に着目し,メディアごとのユーザの反応時間を集計した指標を扇動性を表す一つの指標として提案した.結果として,提案指標は,記事や記事の拡散度合いによらず,メディアによって固有の値を持つ傾向が示唆された.今後は,大規模にユーザ評価実験を行い,提案指標の妥当性についてさらに検証していく. 
(英) In recent years, due to the spread of web and SNS, various problems related to information diffusion such as the spread of fake news and the occurrence of echo chambers have become apparent. Under these circumstances, techniques to evaluate the reliability and bias of information and information sources
have been being developed. In this study, we focus on the incitement as one of information source features (hereinafter, media), and propose a quantitative index to evaluate it. We define {it user reaction time}, which is How fast the user spreads the information which he/she received, as a clue to estimate the degree of incitement. We proposed an index that summed up user reaction time for each media as an index indicating the incitement. As a result, it was suggested that the proposed index tended to have a unique value depending on the media, irrespective of the article and the degree of article diffusion. In the future, we will conduct large-scale user evaluation experiments to further verify the validity of the proposed index.
キーワード (和) 情報拡散 / SNS分析 / ウェブマイニング / / / / /  
(英) information diffusion / social media analysis / web mining / / / / /  
文献情報 信学技報, vol. 119, no. 415, NLC2019-37, pp. 7-11, 2020年2月.
資料番号 NLC2019-37 
発行日 2020-02-09 (NLC) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380
著作権に
ついて
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)
PDFダウンロード NLC2019-37

研究会情報
研究会 NLC  
開催期間 2020-02-16 - 2020-02-17 
開催地(和) 成蹊大学 
開催地(英) Seikei University 
テーマ(和) 言語処理と非言語処理の融合と一般 (NLC+VNV合同研究会) 
テーマ(英) Integration of verbal and non-verbal information 
講演論文情報の詳細
申込み研究会 NLC 
会議コード 2020-02-NLC 
本文の言語 日本語 
タイトル(和) ユーザ反応時間に基づくメディア企業SNSアカウントの傾向分析 
サブタイトル(和)  
タイトル(英) Trend analysis of media company SNS account based on user reaction time 
サブタイトル(英)  
キーワード(1)(和/英) 情報拡散 / information diffusion  
キーワード(2)(和/英) SNS分析 / social media analysis  
キーワード(3)(和/英) ウェブマイニング / web mining  
キーワード(4)(和/英) /  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 榊 剛史 / Takeshi Sakaki / サカキ タケシ
第1著者 所属(和/英) (株)ホットリンク (略称: ホットリンク)
Hottolink, Inc. (略称: HTL)
第2著者 氏名(和/英/ヨミ) 鳥海 不二夫 / Fujio Toriumi / トリウミ フジオ
第2著者 所属(和/英) 東京大学 (略称: 東大)
the University of Tokyo (略称: UT)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2020-02-16 14:45:00 
発表時間 25 
申込先研究会 NLC 
資料番号 IEICE-NLC2019-37 
巻番号(vol) IEICE-119 
号番号(no) no.415 
ページ範囲 pp.7-11 
ページ数 IEICE-5 
発行日 IEICE-NLC-2020-02-09 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会