お知らせ 研究会の開催と会場に参加される皆様へのお願い(2020年10月開催~)
電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
[ログイン]
技報アーカイブ
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2020-01-29 14:00
CNNを用いたfunctional MRI解析における頭蓋骨及び周辺領域が与える影響
細井雄太林 隆史新潟大MI2019-86
抄録 (和) functional MRI(fMRI)は1990年代に登場して以来, 医学や神経科学から心理学, 言語学など様々な分野で用いられている. fMRIは非侵襲な脳計測器の中でも空間分解能に優れており, 脳機能の特定や精神疾患の推定に有効であるとされている. fMRIから得られる脳活動を解析するツールは,現在までに多くの研究者や企業によって開発されている.そして, 多くの解析手法では統計的検定や回帰モデルが用いられてきた. また, 近年のDeep Learningの登場やコンピュータの性能向上にともない, 機械学習を利用した解析手法が盛んに研究されている. なかでも, Convolutional Neural NetworkをfMRI画像に適用したという研究が多く見られる. 今後,fMRI画像からより多くの情報抽出を行うために,複数の刺激を受けている脳の状態を解析する全脳解析が必要となることが予想される.しかし,ノイズの影響を強く受ける深層学習では,頭蓋骨及び周辺領域がノイズとなり影響を与える可能性がある.そこで本稿では, 特徴可視化技術であるGrad-CAMを用いて頭蓋骨および周辺領域が与える影響を報告する. 
(英) A fuctional MRI(fMRI) has been used in various fields from medicine and neuroscience to psychology andlinguistics since its introduction in the 1990s. A fMRI has more spatial resolution among non-invasive brain measuringinstruments, and is said to be effective for identifying brain funtions and estimating mental disorders. Tools for analyzing brain activity obtained from fMRI have been developed by many researchers and companies to date, and statistical analysis and regression models were used in many analysis methods. In addition, with the advent of deep learning in recent years and the improvement of computer performance, analysis methods using machine learning are being actively studied. Among them, many studies have applied Convolutional Neural Network to fMRI images. In the future, in order to extract more information from fMRI images, a whole-brain analysis will be conducted to analyze the state of the brain receiving multiple is required. However, in deep learning that is strongly affected by noise, The skull and surrounding area may be affected by noise. In this paper, we report the effects of the skull and surrounding area using Grad-CAM, a feature visualization technique.
キーワード (和) functional MRI / CNN / Grad-CAM / 頭蓋骨 / / / /  
(英) functional MRI / CNN / Grad-CAM / skull / / / /  
文献情報 信学技報, vol. 119, no. 399, MI2019-86, pp. 91-96, 2020年1月.
資料番号 MI2019-86 
発行日 2020-01-22 (MI) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380
著作権に
ついて
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)
PDFダウンロード MI2019-86

研究会情報
研究会 MI  
開催期間 2020-01-29 - 2020-01-30 
開催地(和) 沖縄県青年会館 
開催地(英) OKINAWAKEN SEINENKAIKAN 
テーマ(和) 医用画像工学一般 
テーマ(英) Medical Image Engineering, Analysis, Recognition, etc. 
講演論文情報の詳細
申込み研究会 MI 
会議コード 2020-01-MI 
本文の言語 日本語 
タイトル(和) CNNを用いたfunctional MRI解析における頭蓋骨及び周辺領域が与える影響 
サブタイトル(和)  
タイトル(英) Effects of skull and surrounding area in functional MRI analysis using Convolutional Neural Network 
サブタイトル(英)  
キーワード(1)(和/英) functional MRI / functional MRI  
キーワード(2)(和/英) CNN / CNN  
キーワード(3)(和/英) Grad-CAM / Grad-CAM  
キーワード(4)(和/英) 頭蓋骨 / skull  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 細井 雄太 / Yuta Hosoi / ホソイ ユウタ
第1著者 所属(和/英) 新潟大学 (略称: 新潟大)
Niigata University (略称: Niigata Univ.)
第2著者 氏名(和/英/ヨミ) 林 隆史 / Takafumi Hayashi / ハヤシ タカフミ
第2著者 所属(和/英) 新潟大学 (略称: 新潟大)
Niigata University (略称: Niigata Univ.)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2020-01-29 14:00:00 
発表時間 10 
申込先研究会 MI 
資料番号 IEICE-MI2019-86 
巻番号(vol) IEICE-119 
号番号(no) no.399 
ページ範囲 pp.91-96 
ページ数 IEICE-6 
発行日 IEICE-MI-2020-01-22 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会