お知らせ 研究会の開催と会場に参加される皆様へのお願い(2020年7月開催~)
電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
[ログイン]
技報アーカイブ
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2020-01-24 10:10
Optimal Transport based Autoencoder for class and style Disentanglement
Florian TambonTetsuo FurukawaKyutechNC2019-62
抄録 (和) The Sinkhorn autoencoder is a novel generative model using optimal transport to model the aggregated posterior from samples, hence discarding traditional reparametrization trick from classical Variational Autoencoder (VAE) and allowing better flexibility of metrics spaces and priors. Yet, one of the down side of all latent space modelling methods is the lack of interpretability and the potential entanglement problem. The aim of this work is to extend the Sinkhorn Autoencoder to better disentangle the latent space by focusing on the class/style separation approach while providing better interpretability and generative capability. Thus, our method would help further expand knowledge regarding optimal transport based generative model. 
(英) The Sinkhorn autoencoder is a novel generative model using optimal transport to model the aggregated posterior from samples, hence discarding traditional reparametrization trick from classical Variational Autoencoder (VAE) and allowing better flexibility of metrics spaces and priors. Yet, one of the down side of all latent space modelling methods is the lack of interpretability and the potential entanglement problem. The aim of this work is to extend the Sinkhorn Autoencoder to better disentangle the latent space by focusing on the class/style separation approach while providing better interpretability and generative capability. Thus, our method would help further expand knowledge regarding optimal transport based generative model.
キーワード (和) Generative model / Optimal Transport / Disentanglement / Sinkhorn Loss / Autoencoder / Latent Space / /  
(英) Generative model / Optimal Transport / Disentanglement / Sinkhorn Loss / Autoencoder / Latent Space / /  
文献情報 信学技報, vol. 119, no. 382, NC2019-62, pp. 17-22, 2020年1月.
資料番号 NC2019-62 
発行日 2020-01-16 (NC) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380
著作権に
ついて
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)
PDFダウンロード NC2019-62

研究会情報
研究会 NLP NC  
開催期間 2020-01-23 - 2020-01-25 
開催地(和) 宮古島マリンターミナル 
開催地(英) Miyakojima Marine Terminal 
テーマ(和) NC, NLP, 一般 
テーマ(英)  
講演論文情報の詳細
申込み研究会 NC 
会議コード 2020-01-NLP-NC 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) Optimal Transport based Autoencoder for class and style Disentanglement 
サブタイトル(英)  
キーワード(1)(和/英) Generative model / Generative model  
キーワード(2)(和/英) Optimal Transport / Optimal Transport  
キーワード(3)(和/英) Disentanglement / Disentanglement  
キーワード(4)(和/英) Sinkhorn Loss / Sinkhorn Loss  
キーワード(5)(和/英) Autoencoder / Autoencoder  
キーワード(6)(和/英) Latent Space / Latent Space  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) Florian Tambon / Florian Tambon /
第1著者 所属(和/英) Kyushu Institute of Technology (略称: Kyutech)
Kyushu Institute of Technology (略称: Kyutech)
第2著者 氏名(和/英/ヨミ) Tetsuo Furukawa / Tetsuo Furukawa /
第2著者 所属(和/英) Kyushu Institute of Technology (略称: Kyutech)
Kyushu Institute of Technology (略称: Kyutech)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2020-01-24 10:10:00 
発表時間 20 
申込先研究会 NC 
資料番号 IEICE-NC2019-62 
巻番号(vol) IEICE-119 
号番号(no) no.382 
ページ範囲 pp.17-22 
ページ数 IEICE-6 
発行日 IEICE-NC-2020-01-16 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会