電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
‥‥ (ESS/通ソ/エレソ/ISS)
技報アーカイブ
‥‥ (エレソ/通ソ)
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2019-03-13 16:25
訓練画像の色量子化を用いた深層ニューラルネットワークの敵対的サンプル耐性の強化
宮里俊太郎山崎俊彦相澤清晴東大
技報オンラインサービス実施中
抄録 (和) 本研究では,画像分類に関するセキュリティ上の脅威である敵対的サンプル(Adversarial Example)に対して耐性のあるニューラルネットワークを訓練する方法を提案する.
まず, 訓練画像のRGB値の情報を落とすことによって, Adversarial Exampleではないデータに対する精度を保ったまま, Adversarial Exampleに対する精度を上げられることを示す.
また, ニューラルネットワークの誤差逆伝播直前に誤差が最大になるように量子化レベルを決めることで, さらに耐性が向上することを示す.
そして, 量子化を用いた訓練をしたモデルのアンサンブルを構成し, 画像を判別不能と出力することを許した場合は先行研究と同等以上の耐性となることを実験的に示す. 
(英) In this research, we propose a method to train a neural network that is robust to adversarial examples to image classification.
First, we show that the accuracy of adversarial example can be improved while keeping the accuracy of data which is not adversarial example by dropping RGB value information of the training image.
In addition, we suggest that the robustness improves further by determining the quantization level so that the loss function is maximized just before back propagation of the neural network.
Finally, we report the ensemble of the model trained with quantization accomplished the same performance as the model adversarial trained, if they can reject indeterminate examples.
キーワード (和) 深層学習 / adversarial example / / / / / /  
(英) deep learning / adversarial example / / / / / /  
文献情報 信学技報, vol. 118, no. 494, EMM2018-109, pp. 95-100, 2019年3月.
資料番号 EMM2018-109 
発行日 2019-03-06 (EMM) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380

研究会情報
研究会 EMM  
開催期間 2019-03-13 - 2019-03-14 
開催地(和) 沖縄県青年会館 
開催地(英) TBD 
テーマ(和) 画質・音質評価,知覚・認知メトリクス,人間視聴覚システム,一般 
テーマ(英) Image and Sound Quality, Metrics for Perception and Recognition, Human Auditory and Visual System, etc. 
講演論文情報の詳細
申込み研究会 EMM 
会議コード 2019-03-EMM 
本文の言語 日本語(英語タイトルなし) 
タイトル(和) 訓練画像の色量子化を用いた深層ニューラルネットワークの敵対的サンプル耐性の強化 
サブタイトル(和)  
タイトル(英)  
サブタイトル(英)  
キーワード(1)(和/英) 深層学習 / deep learning  
キーワード(2)(和/英) adversarial example / adversarial example  
キーワード(3)(和/英) /  
キーワード(4)(和/英) /  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 宮里 俊太郎 / Shuntaro Miyazato / ミヤザト シュンタロウ
第1著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第2著者 氏名(和/英/ヨミ) 山崎 俊彦 / Toshihiko Yamasaki / ヤマサキ トシヒコ
第2著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第3著者 氏名(和/英/ヨミ) 相澤 清晴 / Kiyoharu Aizawa / アイザワ キヨハル
第3著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2019-03-13 16:25:00 
発表時間 25 
申込先研究会 EMM 
資料番号 IEICE-EMM2018-109 
巻番号(vol) IEICE-118 
号番号(no) no.494 
ページ範囲 pp.95-100 
ページ数 IEICE-6 
発行日 IEICE-EMM-2019-03-06 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会