電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
‥‥ (ESS/通ソ/エレソ/ISS)
技報アーカイブ
‥‥ (エレソ/通ソ)
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2018-11-22 15:10
[ポスター講演]An Electromagnetic Field Reduction Method for Inductive Power Transfer in Transportation System
Jedok KimSeungyoung AhnKAIST
技報オンラインサービス実施中
抄録 (和) Currently, charging electric transportation systems with wireless power transfer (WPT) technologies are drawing strong attention. The advantages of WPT application to transportation systems are that WPT can provide safety and convenience enhancement compared to the conductive charging methods. There are many types of WPT technologies such as acoustic, light, capacitive, and inductive power transfer (IPT), and usually IPT is used for charging electric transportation system because of their high power capacity and efficiency. However, the IPT system for transportations require to use high electrical power. This means that high density magnetic field would be generated in the vicinity of the IPT system during the operation. If leakage magnetic fields is radiated from IPT system to the human, it will negative influence to human health. Therefore, leakage magnetic field should be minimized for preventing negative effect to human body.
In order to reduce leakage magnetic field, shielding methods such as passive shielding and active shielding can be applied. Passive shielding methods could be classified into conductive shielding and magnetic shielding. Conductive shielding method provides high shielding performances, but high heats could be generated because of eddy current. In addition, some magnetic fields are eliminated by eddy losses so power transfer efficiency could be decreased. Magnetic shielding method is to regulate magnetic flux path using ferromagnetic materials. Magnetic shielding provides efficiency enhancement based on their high permeability. However, shielding performance is not effective when magnetic flux paths have air gap.
Active shielding is another way to reduce electromagnetic field and this can effectively reduce the leakage magnetic field of high power IPT system. A principle of active shielding is to eliminate leakage magnetic fields by canceling magnetic field, which has the opposite vector direction compare to leakage magnetic field. The active shielding system provides high shielding performance. However, the Active shielding system requires an additional power source for generating canceling magnetic field. This requirement makes system efficiency degradation in terms of total energy consumption because some electrical power should be used for generating canceling magnetic field. Therefore, electromagnetic field reduction method for high power inductive power transfer application (IPT) that can provide high leakage magnetic field reduction performance with minimizing efficiency degradation is necessary.
This paper proposes an electromagnetic field reduction method for high power IPT application in transportation system using single reactive shield coil. A reactive shield generates canceling magnetic field by leakage magnetic field so additional power source is not required unlike active shielding system. In addition, reactive shield can provide high shielding performance like active shield system because reactive shield generates canceling magnetic field as well. A proposed reactive shield application method has been verified by EM simulation in terms of total magnetic fields in the vicinity of the transportation IPT system. Simulation results show that the proposed method can effectively reduce leakage magnetic field at observation points. 
(英) Currently, charging electric transportation systems with wireless power transfer (WPT) technologies are drawing strong attention. The advantages of WPT application to transportation systems are that WPT can provide safety and convenience enhancement compared to the conductive charging methods. There are many types of WPT technologies such as acoustic, light, capacitive, and inductive power transfer (IPT), and usually IPT is used for charging electric transportation system because of their high power capacity and efficiency. However, the IPT system for transportations require to use high electrical power. This means that high density magnetic field would be generated in the vicinity of the IPT system during the operation. If leakage magnetic fields is radiated from IPT system to the human, it will negative influence to human health. Therefore, leakage magnetic field should be minimized for preventing negative effect to human body.
In order to reduce leakage magnetic field, shielding methods such as passive shielding and active shielding can be applied. Passive shielding methods could be classified into conductive shielding and magnetic shielding. Conductive shielding method provides high shielding performances, but high heats could be generated because of eddy current. In addition, some magnetic fields are eliminated by eddy losses so power transfer efficiency could be decreased. Magnetic shielding method is to regulate magnetic flux path using ferromagnetic materials. Magnetic shielding provides efficiency enhancement based on their high permeability. However, shielding performance is not effective when magnetic flux paths have air gap.
Active shielding is another way to reduce electromagnetic field and this can effectively reduce the leakage magnetic field of high power IPT system. A principle of active shielding is to eliminate leakage magnetic fields by canceling magnetic field, which has the opposite vector direction compare to leakage magnetic field. The active shielding system provides high shielding performance. However, the Active shielding system requires an additional power source for generating canceling magnetic field. This requirement makes system efficiency degradation in terms of total energy consumption because some electrical power should be used for generating canceling magnetic field. Therefore, electromagnetic field reduction method for high power inductive power transfer application (IPT) that can provide high leakage magnetic field reduction performance with minimizing efficiency degradation is necessary.
This paper proposes an electromagnetic field reduction method for high power IPT application in transportation system using single reactive shield coil. A reactive shield generates canceling magnetic field by leakage magnetic field so additional power source is not required unlike active shielding system. In addition, reactive shield can provide high shielding performance like active shield system because reactive shield generates canceling magnetic field as well. A proposed reactive shield application method has been verified by EM simulation in terms of total magnetic fields in the vicinity of the transportation IPT system. Simulation results show that the proposed method can effectively reduce leakage magnetic field at observation points.
キーワード (和) Inductive Power Transfer / Electromagnetic Field Reduction / Electromagnetic Shielding / Wireless Power Transfer / Electromagnetic Compatibility / Transportation Electrification / /  
(英) Inductive Power Transfer / Electromagnetic Field Reduction / Electromagnetic Shielding / Wireless Power Transfer / Electromagnetic Compatibility / Transportation Electrification / /  
文献情報 信学技報, vol. 118, no. 317, EMCJ2018-75, pp. 53-53, 2018年11月.
資料番号 EMCJ2018-75 
発行日 2018-11-15 (EMCJ) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380

研究会情報
研究会 EMCJ IEE-EMC IEE-MAG  
開催期間 2018-11-22 - 2018-11-23 
開催地(和) KAIST(韓国大田市) 
開催地(英) KAIST 
テーマ(和) EMC Joint Workshop 2018, Daejon 
テーマ(英) EMC Joint Workshop 2018, Daejon 
講演論文情報の詳細
申込み研究会 EMCJ 
会議コード 2018-11-EMCJ-EMC-MAG 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) An Electromagnetic Field Reduction Method for Inductive Power Transfer in Transportation System 
サブタイトル(英)  
キーワード(1)(和/英) Inductive Power Transfer / Inductive Power Transfer  
キーワード(2)(和/英) Electromagnetic Field Reduction / Electromagnetic Field Reduction  
キーワード(3)(和/英) Electromagnetic Shielding / Electromagnetic Shielding  
キーワード(4)(和/英) Wireless Power Transfer / Wireless Power Transfer  
キーワード(5)(和/英) Electromagnetic Compatibility / Electromagnetic Compatibility  
キーワード(6)(和/英) Transportation Electrification / Transportation Electrification  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) Jedok Kim / Jedok Kim /
第1著者 所属(和/英) Korea Advanced Institute of Science and Technology (略称: KAIST)
Korea Advanced Institute of Science and Technology (略称: KAIST)
第2著者 氏名(和/英/ヨミ) Seungyoung Ahn / Seungyoung Ahn /
第2著者 所属(和/英) Korea Advanced Institute of Science and Technology (略称: KAIST)
Korea Advanced Institute of Science and Technology (略称: KAIST)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2018-11-22 15:10:00 
発表時間 60 
申込先研究会 EMCJ 
資料番号 IEICE-EMCJ2018-75 
巻番号(vol) IEICE-118 
号番号(no) no.317 
ページ範囲 p.53 
ページ数 IEICE-1 
発行日 IEICE-EMCJ-2018-11-15 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会