電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
‥‥ (ESS/通ソ/エレソ/ISS)
技報アーカイブ
‥‥ (エレソ/通ソ)
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2018-06-10 11:20
一般化ムーアグラフの効率的探索法の提案と評価
里谷佳紀高橋規一岡山大NLP2018-43 CCS2018-16
抄録 (和) 高性能計算に利用される計算機ネットワークはしばしば無向正則グラフでモデル化され,その平均頂点間距離はデータ通信の遅延と密接に関係する.したがって,短い平均頂点間距離をもつ無向正則グラフを求めることは低遅延計算機ネットワークを実現するための重要な課題である.平均頂点間距離が理論的下界と一致する無向正則グラフは一般化ムーアグラフとよばれる.指定された頂点数と次数をもつ一般化ムーアグラフを探索する方法が現在までにいくつか提案されてきたが,それらの方法は一般化ムーアグラフの性質を十分に利用していない.そこで本稿では,一般化ムーアグラフの性質を利用した効率的探索法をいくつか提案し,それらの有効性を実験によって検証する. 
(英) Computer networks used for high performance computing are often modeled by undirected regular graphs, and the average shortest path length (ASPL) of the graph is closely related to the data transmission latency. Therefore, finding an undirected regular graph with the minimum ASPL is an important problem in order to build a low latency network. An undirected regular graph is called a generalized Moore graph (GMG) when its ASPL is identical with the theoretical lower bound.Several methods have been proposed so far to find GMGs with given order and degree. However, they do not make a full use of the characteristics of GMGs. In this report, we propose some efficient methods for searching GMGs and examine their effectiveness by experiments.
キーワード (和) グラフ理論 / 一般化ムーアグラフ / 平均頂点間距離 / / / / /  
(英) graph theory / generalized Moore graph / average shortest path length / / / / /  
文献情報 信学技報, vol. 118, no. 75, NLP2018-43, pp. 85-90, 2018年6月.
資料番号 NLP2018-43 
発行日 2018-06-01 (NLP, CCS) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380
著作権に
ついて
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)
PDFダウンロード NLP2018-43 CCS2018-16

研究会情報
研究会 NLP CCS  
開催期間 2018-06-08 - 2018-06-10 
開催地(和) 京都テルサ 
開催地(英) Kyoto Terrsa 
テーマ(和) 同期,ネットワーク,一般 
テーマ(英) Synchronization, Networks, etc 
講演論文情報の詳細
申込み研究会 NLP 
会議コード 2018-06-NLP-CCS 
本文の言語 日本語 
タイトル(和) 一般化ムーアグラフの効率的探索法の提案と評価 
サブタイトル(和)  
タイトル(英) Some Efficient Methods for Searching Generalized Moore Graphs 
サブタイトル(英)  
キーワード(1)(和/英) グラフ理論 / graph theory  
キーワード(2)(和/英) 一般化ムーアグラフ / generalized Moore graph  
キーワード(3)(和/英) 平均頂点間距離 / average shortest path length  
キーワード(4)(和/英) /  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 里谷 佳紀 / Yoshiki Satotani / サトタニ ヨシキ
第1著者 所属(和/英) 岡山大学 (略称: 岡山大)
Okayama University (略称: Okayama Univ.)
第2著者 氏名(和/英/ヨミ) 高橋 規一 / Norikazu Takahashi / タカハシ ノリカズ
第2著者 所属(和/英) 岡山大学 (略称: 岡山大)
Okayama University (略称: Okayama Univ.)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2018-06-10 11:20:00 
発表時間 25 
申込先研究会 NLP 
資料番号 IEICE-NLP2018-43,IEICE-CCS2018-16 
巻番号(vol) IEICE-118 
号番号(no) no.75(NLP), no.76(CCS) 
ページ範囲 pp.85-90 
ページ数 IEICE-6 
発行日 IEICE-NLP-2018-06-01,IEICE-CCS-2018-06-01 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会