電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
‥‥ (ESS/通ソ/エレソ/ISS)
技報アーカイブ
‥‥ (エレソ/通ソ)
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2014-11-18 15:00
[ポスター講演]Unsupervised Dimension Reduction via Least-Squares Quadratic Mutual Information
Janya SainuiTokyo Inst. of Tech.)・Masashi SugiyamaUniv. of Tokyo
技報オンラインサービス実施中
抄録 (和) The goal of dimension reduction is to represent high-dimensional data in a lower-dimensional subspace, while intrinsic properties of the original data are kept as much as possible. An important challenge in unsupervised dimension reduction is the choice of tuning parameters, because no supervised information is available and thus parameter selection tends to be subjective and heuristic. In this paper, we propose an information-theoretic approach to unsupervised dimension reduction that allows objective tuning parameter selection. We employ quadratic mutual information (QMI) as our information measure, which is known to be less sensitive to outliers than ordinary mutual information, and QMI is estimated analytically by a least-squares method in a computationally efficient way. Then, we provide an eigenvector-based efficient implementation for performing unsupervised dimension reduction based on the QMI estimator. The usefulness of the proposed method is demonstrated through experiments. 
(英) The goal of dimension reduction is to represent high-dimensional data in a lower-dimensional subspace, while intrinsic properties of the original data are kept as much as possible. An important challenge in unsupervised dimension reduction is the choice of tuning parameters, because no supervised information is available and thus parameter selection tends to be subjective and heuristic. In this paper, we propose an information-theoretic approach to unsupervised dimension reduction that allows objective tuning parameter selection. We employ quadratic mutual information (QMI) as our information measure, which is known to be less sensitive to outliers than ordinary mutual information, and QMI is estimated analytically by a least-squares method in a computationally efficient way. Then, we provide an eigenvector-based efficient implementation for performing unsupervised dimension reduction based on the QMI estimator. The usefulness of the proposed method is demonstrated through experiments.
キーワード (和) unsupervised dimension reduction / quadratic mutual information / least-squares density difference / Epanechnikov kernel / hyperparameter tuning / / /  
(英) unsupervised dimension reduction / quadratic mutual information / least-squares density difference / Epanechnikov kernel / hyperparameter tuning / / /  
文献情報 信学技報, vol. 114, no. 306, IBISML2014-69, pp. 259-262, 2014年11月.
資料番号 IBISML2014-69 
発行日 2014-11-10 (IBISML) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380

研究会情報
研究会 IBISML  
開催期間 2014-11-17 - 2014-11-19 
開催地(和) 名古屋大学 
開催地(英) Nagoya Univ. 
テーマ(和) 情報論的学習理論ワークショップ(IBIS2014) 
テーマ(英)  
講演論文情報の詳細
申込み研究会 IBISML 
会議コード 2014-11-IBISML 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) Unsupervised Dimension Reduction via Least-Squares Quadratic Mutual Information 
サブタイトル(英)  
キーワード(1)(和/英) unsupervised dimension reduction / unsupervised dimension reduction  
キーワード(2)(和/英) quadratic mutual information / quadratic mutual information  
キーワード(3)(和/英) least-squares density difference / least-squares density difference  
キーワード(4)(和/英) Epanechnikov kernel / Epanechnikov kernel  
キーワード(5)(和/英) hyperparameter tuning / hyperparameter tuning  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) Janya Sainui / Janya Sainui /
第1著者 所属(和/英) Tokyo Institute of Technology (略称: 東工大)
Tokyo Institute of Technology (略称: Tokyo Inst. of Tech.)
第2著者 氏名(和/英/ヨミ) Masashi Sugiyama / Masashi Sugiyama /
第2著者 所属(和/英) The University of Tokyo (略称: 東大)
The University of Tokyo (略称: Univ. of Tokyo)
第3著者 氏名(和/英/ヨミ) / /
第3著者 所属(和/英) (略称: )
(略称: )
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2014-11-18 15:00:00 
発表時間 180 
申込先研究会 IBISML 
資料番号 IEICE-IBISML2014-69 
巻番号(vol) IEICE-114 
号番号(no) no.306 
ページ範囲 pp.259-262 
ページ数 IEICE-4 
発行日 IEICE-IBISML-2014-11-10 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会