
DEWS2003 6-C-04

XPath-based Concurrency Control for XML Data

Eun HYE CHOI† and Tatsunori KANAI†

† Corporate Research & Development Center, Toshiba Corporation
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, 212–8582 Japan

E-mail: {eunhye.choi,tatsunori.kanai}@toshiba.co.jp

Abstract For concurrency control of XML data, this paper proposes a new locking method based on XPath with a new data
management model. Although increasing concurrency for XML data becomes an important issue in XML data management,
few effective methods providing high concurrency of transactions working on the same XML document have been proposed so
far. To overcome this problem, we propose a locking method that can achieve high concurrency while guaranteeing the serial-
izability of transactions to the same XML document. In the proposed method, logical locks are set on XPath expressions used
in transaction accesses, and conflicts that violate serializability are detected each time a read or a write access is requested by
concurrent transactions. Efficient algorithms for detecting conflicts are also proposed in this paper. Since the proposed locking
is at the level of precise data in XML documents, high concurrency for XML data can be achieved assuring serializability.
Key words Concurrency control, XML data management, XPath, Locking, Serializability, Phantom problem

1. Introduction

1. 1 Backgrounds
As the eXtensible Markup Language (XML) [2] becomes a

widely adopted standard for data representation in various appli-
cation areas, the number of XML documents is rapidly growing and
the subsequent need for sharing XML documents by different ap-
plications and multiple users is increasing. Concurrency control of
transactions working on the same document is thus an important is-
sue in XML data management. Serializability, which requires that
concurrent transactions must produce the same result as the same
transactions executed in a certain sequential order, has been consid-
ered as a fundamental problem for concurrency control, and locking
is known as a robust technique to handle this problem. Locking to
ensure the serializability has been extensively investigated for tra-
ditional RDBMSs, but not yet for XML data management systems.
In the present XML data management, XML documents are usually
stored either to relational databases as BLOBs or to native XML
databases as XML format. However, in both cases, locking is often
at the level of entire documents and thus no concurrency of transac-
tions to the same documents is actually provided [1]. The aim of this
paper is to overcome this problem and to achieve high concurrency
for XML documents while ensuring serializability.

In order to ensure the serializability of transactions, locking must
prevent the phantom problem [5]. A phantom indicates the data that
was already disappeared from or will appear to a database, and thus
locking on such phantoms is difficult since the phantoms do not
physically exist at the time of locking. To solve the phantom prob-
lem, two well-known forms of locking have been proposed so far:
physical index-based locking and logical predicate-based locking.

The index-based locking, such as key range locking [9], prevents
the phantom problem by locking on the index entry to the phan-
tom. So far, because of low locking cost and useful index structure
such as the B-Tree [7], the index-based locking have been widely
adopted for RDBMSs. However, the index-based locking is not ap-
plicable for XML data management in the absence of an efficient
index structure for an XML document model.

The predicate-based locking, such as predicate locking [5] and
precision locking [8], prevents the phantom problem by locking on
the predicate that identifies the phantom. In the predicate locking,
any conflict to violate serializability is detected by checking if two
predicates used in concurrent transaction accesses are mutually sat-
isfiable. The predicate locking is more general than the index-based
locking, but is more expensive since such the satisfiability problem
between arbitrary two predicates is known to be NP-complete. To
overcome this shortcoming, the precision locking performs the con-
flict check between predicates and updates, instead of that between
two predicates, in the following way: As a transaction performs a
read access and a write access, the predicate used in the read access
and the update by the write access are posted in a predicate list and
an update list, respectively. In order to detect a conflict between
predicates and updates by different transactions, each predicate (up-
date) posted is checked against updates (predicates) by other trans-
actions in the update list (the predicate list). The precision locking
performs the conflict check against only actual predicates and up-
dates, and thus provides high concurrency and a relatively lower
cost than the predicate locking. Inherently, we conjecture that the
concept of the precision locking could be helpful to ensure serial-
izability in XML data management. However, the problem to per-
form practical conflict checks that can handle XML documents still
remains.

1. 2 New Results
Our contribution is a new locking method that guarantees serial-

izability and provides high concurrency of transactions to the same
XML documents. To our best knowledge, the only one method by
Grabs et al. [6] tackled the same concurrency control problem for
XML documents so far. They proposed a combination of well-
known granularity locking and predicate locking which provides
high concurrency, but their locking is applicable to only restricted
XML documents with simple XPath query for transaction accesses.
Against [6], our method allows general XML documents and full
XPath query. In the proposed method, each time an access is re-
quested, conflict checks to ensure serializability are performed in
the following way: As for each read access, conflicts against all

<?xml version="1.0" ?>

< flowers >

 < flower >

 <name> Tulip </name>

 <color> Yellow </color>

 <price unit=''JPY''> 150 </price>

 < /flower >

 < flower >

 <name> Rose </name>

 <color> Red </color>

 <price unit=''JPY''> 500 </price>

 </ flower >

</ flowers >

flowers

flower

name color price

Rose Red 500

flower

name color price

Tulip Yellow 150

e

e e e

t t t

a
unit=JPY

e

e e e

t t t

a
unit=JPY

e

y

x
flowers

flower

name color price

Rose Red 350

flower

name color price

Tulip Yellow 150

e

e e e

t t t

a
unit=JPY

e

e e e

t t t

a
unit=JPY

e

x

y

図 1 An example XML document. 図 2 A document tree. 図 3 An updated document.

previous write accesses by distinct transactions are checked. As for
each write access, conflicts against all previous read accesses by dis-
tinct transactions are checked. In the following, the former is called
a read-write check; the latter is called a write-read check.

The basic ideas of the proposed method are as follows. First, we
introduce a new data management model, which handles the three
kinds of documents: (1) an original document in the database, de-
noted by Dst, (2) a copy of Dst for each transaction Ti, denoted by
Di and (3) a copy of Dst for detecting conflicts, denoted by Dall.
Each transaction Ti has accesses to document D i instead of orig-
inal document Dst, and write accesses by T i update both Di and
Dall. Document Dall thus represents the document state updated
by all transactions. Only when Ti commits, the updates by Ti are
reflected in Dst.

Next, we propose a logical locking approach in which locks are
set on the XPath expressions used read accesses and conflicts be-
tween the XPath expressions and the updates by write accesses are
checked. To detect conflicts, checking the satisfiability of an update
with an XPath expression is necessary but is difficult since XPath
is a path-based and semistructured query language, not a generic
boolean predicate. In order to handle this deficiency, we present
a sufficient condition such that any conflict between the XPath ex-
pression and the update can be detected by checking the condition
when evaluating the expression on two documents such that one
contains the update and the other does not. The proposed locking
thus resolves the phantom problem by regarding XPath expressions
as predicates.

Based on our data management model and XPath-based locking,
conflicts between concurrent transaction accesses are checked as
follows: The read-write check is performed by comparing nodes in
documents Di and Dall which are reachable when evaluating XPath
expressions. Since the updates of all previous write accesses are re-
flected in Dall, the read-write check can be completed by just one
comparison using Dall. On the other hand, dealing with the write
access is typically complicated much more than dealing with the
read access. The write-read check is performed based on the idea
of using previous states of Dall. We also present an algorithm to
dynamically determine whether the current state of Dall provides a
large effect on subsequent write-read checks. In addition, we show
that the proposed scheduling of saving previous states of D all is
always optimal in terms of the effects obtained.

2. Preliminaries

This section describes the XML document model and the trans-
action access model used in our research.

2. 1 XML Document Model
An XML document is modeled as a tree, which details the parent-

child relationship between various elements of the document. Each

node in the tree has a type such as element, text and attribute. (For
more detail of XML, refer to [2].) In the following, an XML docu-
ment is referred to as a document for short. Fig. 1 and Fig. 2 respec-
tively show an example XML document and its representation as a
tree. In Fig. 2, “e”, “t” and “a” attached to each node represent that
the node type is element, text and attribute, respectively.

2. 2 Transaction Model
We consider a set of concurrent transactions T = {T 1, · · · , Tn}

(n >= 2) which accesses the same document where n denotes the
number of transactions. Hereafter, the term transactions means con-
current active transactions otherwise indicated. In this paper, the
case where a transaction accesses to more than one document is not
considered since such accesses could be classified into the accesses
to each document and only accesses to the same document is impor-
tant when considering concurrency control.

Each transaction sequentially performs several read accesses (R-
accesses, for short) and write accesses (W-accesses, for short) to the
document. The time-ordered sequence of the accesses by transac-
tion Ti is referred to as an access sequence of T i and is denoted by
ASi. The access sequence of T i then consists of read sequences (R-
sequences, for short) and write sequences (W-sequences, for short),
and is modeled as illustrated in Fig. 4. An read sequence (write
sequence) indicates a sequence of consecutive read accesses (write
accesses) in the access sequence. We also define the following no-
tations:

• WSi(k) (k > 0) : the k-th write sequence of Ti.
• |WSi(k)| : the number of write accesses in WSi(k).
• wni : the current number of write sequences of Ti .
• RSi(k) (k >= 0) : if k = 0, the first read sequence; other-

wise, the read sequence right after write sequence WS i(k).
Fig. 4 shows an example access sequence of a transaction T i .

In the figure, the box and the vertical line represent a write access
and a read sequence which contains one or more read accesses, re-
spectively. Write sequences WSi(1) and WSi(2) are the first and
the second write sequences respectively, and |WS i(1)| = 1 and
|WSi(2)| = 2. Read sequence RS i(0) denotes the read sequence
before the first write access, and read sequences RS i(1) and RSi(2)

follow right after WSi(1) and WSi(2), respectively.
2. 3 XPath Access Model
We assume that transactions have accesses to the document using

the XPath [4], which is the language to address parts of the XML
document and is being used as a base in a number of other XML
standards such as XQuery [3]. We assume that the reader is famil-
iar with XPath and basic notations such as an XPath expression, a
location path, and an axis. (For the detail of XPath, refer to [4].)

An R-access is performed to the document by specifying an
XPath expression that identifies a node (or nodes) in the document.
A read operation is represented by Read(path) with XPath expres-

Start

RSi(0)

Finish

(Commit

or Abort)

RSi(1)

RSi(2)

WSi(1)

WSi(2)

:

:

write access

WSi(k) : k-th write sequence

RSi(k) : read sequence after WSi(k)

Ti

read access sequence

図 4 An access sequence of transaction T i.

sion path.
A W-access is performed to the document by specifying a write

operation and the target node (or nodes) of the write operation. The
target node is selected by the R-access to the document. We con-
sider three kinds of write operations on the document: insert, delete,
and replace. The insert operation and the delete operation could be
to insert and delete a node (or nodes) in the document. The replace
operation could be to replace the value of a node, such as an element
node or an attribute node, with a new value. Note that the proposed
locking does not depend on the type of write operation.
［Example 1］ Consider the document shown in Fig. 2. First, sup-
pose that an R-access Read(path) with path=”flower[name=Rose]
/price” is performed to the document. XPath expression path is
evaluated on the document and then element node “price” contained
in “flower” element whose “name” element has the value of “Rose”
is selected. The selected node is node y in Fig. 2. The selected node
is marked with bold lines in Fig. 2. Note that the value of the se-
lected node is “500”, that is the value of its child text node. Next,
suppose that a W-access that replaces the value of the selected node
by the R-access to “350” is performed to the document. The doc-
ument is then updated by the W-access as shown in Fig. 3. The
updated parts are marked with bold lines in Fig. 3.

3. Proposed Locking Method

In order to ensure the serializability, a locking method must pre-
vent any conflict between R-accesses and W-accesses executed con-
currently by different transactions. The proposed locking method
detects conflicts between XPath expressions used in R-accesses and
updates by W-accesses by different transactions under our data man-
agement model. This section describes a new data management
model and the overview of conflict check.

3. 1 Data Management Model
The data management model is illustrated in Fig. 5 where each

triangle represents a document state and the following three kinds
of document states are contained:

• Dst : the committed document state in the database.
• Di for Ti : the document state containing the updates of T i .
• Dall : the document state containing the updates of all active

transactions.
The state of Dst is copied to Dall initially, and as a new trans-

action Ti is issued, documents Dst, Di and Dall are handled and
updated in the following manner:

(1) When Ti starts, generate Di as a copy of Dst.
(2) While Ti proceeds, Ti accesses to D i instead of Dst.

When Di is updated by each W-access of T i , the update is also
reflected in Dall.

(3) When Ti commits, reflect the updates by Ti in Dst.
(4) When Ti aborts, Di is just deleted and Dall is regenerated

Dst

D1 Di Dn

Dall

… …

(1) start

(2) proceed

(3) commit

T
i

T
1

T
n

(4) abort

図 5 Data management model.

Previous access by other transactions
Read Write

Requested Read a) − b)
√

access Write c)
√

d) −√
means that the detection of a conflict is needed.

図 6 Conflicts to be checked.

for taking away the updates by T i reflected in Dall.
In our data management model, the abort or rollback of a trans-

action can be easily handled since the updates by each transaction
Ti are reflected in document D i but Dst. Document Dall contain-
ing the updates of all transactions is used for the proposed locking
method to efficiently detect conflicts to violate serializability.

Here we define the equivalence of nodes in distinct documents.
Nodes are equivalent to each other in the following cases: (1) one is
copied from the other, (2) nodes are copied from the same node, (3)
nodes are the same updates contained in different documents. For
two sets of nodes, N = {v1, · · · , vm} and N ′ = {v′

1, · · · , v′
m},

in distinct documents, N is equivalent to N ′ iff vj ≡ v′
j for any

1 <= j <= m. For example, consider the documents shown in Fig.
2 and Fig. 3 again. Nodes x’s in the two documents are equivalent
but nodes y’s are not equivalent to each other.

In addition, we define merging two documents D i and Dj as fol-
lows: the updated part of Ti contained in Di, the updated part of
Tj contained in Dj and the equivalent part are reflected in the re-
sult document. Note that the updated part, i.e. nodes, in D i and
the updated part in Dj are mutually disjoint. Suppose that there are
such nodes, then there are previous W-accesses by T i and by Tj that
conflict with each other. As will be shown later, such a conflict is
detected when the W-access is requested. In the following, the term
Merge(Di, Dj) denotes the document merging D i and Dj .

3. 2 Conflict Check
In the proposed locking, each time a transaction requests an R-

access or a W-access, checking conflicts of the access against pre-
vious accesses by other transactions is performed. Among the four
cases shown in Fig. 6, checking the read-write conflict (Case b) and
the write-read conflict (Case c) is sufficient to ensure the serializ-
ability. There is no conflict between R-accesses. On the other hand,
the write-write conflict can be detected by the read-write conflict
or the write-read conflict since, before a write operation on some
nodes that leads to a conflict, a read operation on the same nodes is
performed.

The proposed locking method consists of the following two
phases for checking conflicts: read-write check (R-W check, for
short) and write-read check (W-R check, for short).

• Read-Write Check : Each time a transaction requests an R-
access, check whether the R-access leads to the read-write conflict
with previous W-accesses of other transactions.

• Write-Read Check : Each time a transaction requests a W-
access, check whether the W-access leads to the write-read conflict

with previous R-accesses of other transactions.
When a conflict is detected by the R-W check or the W-R check,

a requested access is delayed until the other transaction that the ac-
cess conflicts finishes. Actually which transaction is blocked can
be determined by transaction priority. Deadlock which occurs by
blocking transactions could be detected by using well-known solu-
tions such as the wait-for graph [7]. The proposed algorithms for the
R-W check and the W-R check are given in Section 4 and Section
5, respectively.

4. Read-Write Check

This section describes the proposed method for the R-W check.
Each time an R-access is requested, the R-W check is performed
for detecting the R-W conflict caused by the R-access. The R-W
conflict is detected based on the XPath evaluation under our data
management model. A conflict of an R-access with previous W-
accesses means that the result of the R-access to a document is dif-
ferent from that to the document updated by the W-accesses. Here-
after we define the boolean function Conf(R,W) to be true (1)
iff an R-access R conflicts a sequence, W , of W-accesses.

Consider that a transaction Ti requests an R-access R i =

Read(path). In our data management, Ri is then performed to doc-
ument Di and some nodes on D i are selected by evaluating XPath
expression path on Di as a result. In the following, the function
GetN(Di, path) is defined as the nodes on document D i selected
by XPath expression path. Let Wj denote a sequence of previ-
ous W-accesses by transaction T j . Iff Conf(Ri,Wj) = true with
Ri = Read(path), then

GetN(Di, path) �≡ GetN(Merge(Di, Dj), path). (4.1)

(Since the previous W-accesses of T j is reflected in Dj ,
Merge(Di, Dj) is equal to the state of Di updated by Wj .) The
conflict of Ri with previous W-accesses by any other transaction T j

is then detected by checking formula (4.1).
Here we note that an R-access could conflict with W-accesses of

more than one transactions even when the R-access does not conflict
with those of each of the transactions. For transactions T j and Th in
(T −{Ti}), there is a case where Conf(Ri,Wj+Wh) = true but
Conf(Ri,Wj) �= true and Conf(Ri,Wh) �= true. The conflict
is then detected by checking if GetN(D i, Ri) ≡ GetN(D′

i, Ri)

where D′
i is the state of Di merging both Dj and Dh. On the

other hand, there is also a case where Conf(R i,Wj) = true

or Conf(Ri,Wh) = true but Conf(Ri,Wj + Wh) �= true.
Hence the R-W conflict of Ri with previous W-accesses needs to be
checked against all combinations of transactions in (T −{T i}), but
such a conflict check against all the combinations is extremely time
consuming. (The number of all combinations to be considered for
each R-access is 2n−1 − 1.)

To handle this problem, we present a sufficient condition for the
R-W conflict of Ri such that a conflict caused by R i with previous
W-accesses by any set of other transactions is detected by checking
if the condition holds in the XPath evaluation on the state of doc-
ument Di updated by the W-accesses of all transactions. In other
words, if Ri causes a conflict with previous W-accesses by any set
of transactions in T − {Ti}, then the condition holds with the state
of document Di updated by W1 + · · · + Wj + · · · + Wn(= W).

In the following, we define the function GetD(Di,W) as the
state of document Di updated by W-accesses W . Let N j in
GetD(Di,W) be the part, i.e. nodes, updated by W j .

For any Nj and Nh (j �= h), Nj ∩ Nh �= ∅ (4.2)

since there is no conflict between previous W-accessesW j andWh .
(Such the conflict was previously detected.) In addition, for each
node in Nj , all nodes in the subtree whose root is the node are also
contained in Nj .

In the following explanation for the conflict check, we refer to the
semantics of XPath presented in [10], which is shown in Appendix
A. The proposed method however is a general approach that can be
applicable to any semantics for XPath. To save space, we omit the
precise explanation for the semantics of XPath, so refer to [10] for
more detail. The semantics of XPath is specified by three functions
S, Q, and E with two parameters: an axis a and a context node x.
Among the three functions, both functions Q and E recursively call
function S and the results of them (boolean and numerical value, re-
spectively) are determined from the nodes returned by S. Here we
thus concentrate on function S. Function S a[[p]]x denotes the nodes
selected by location path p with parameters a and x. When XPath
expression path is evaluated on document D i, function S could be
called several times for specifying the resulting nodes on D i. We
use the term Sa[[p]]x(Di) to indicate the result of S on Di. Lemma
1 and Theorem 1 then hold.
［Lemma 1］ If GetN(Di, path) �≡ GetN(D′

i, path) with XPath
expression path and two documents D i and D′

i, function S such
that Sa[[p]]x(Di) �≡ Sa[[p]]x(D′

i) is called in the evaluation of path

on Di and D′
i.

proof: Suppose that such function S is not called in the evaluation
of path, that is, S always returns the equivalent results for D ′

i and
D′

i. Then, obviously, GetN(Di, path) ≡ GetN(D′
i, path). This

is a contradiction. �

［Theorem 1］ Consider two sets, T ′ and T ′′, of transactions such
that T ′∩T ′′ = ∅ andT ′+T ′′⊂

=T −{Ti}. LetW ′ andW ′′ be previ-
ous W-accesses of T ′ and T ′′, respectively. If Ri(= Read(path))

conflicts with W ′, function S such that

Sa[[p]]x(Di) �≡ Sa[[p]]x(GetD(Di,W ′ + W ′′)) (4.3)

is called in the evaluation of path on D i and GetD(Di,W ′+W ′′).
proof: Let W = W ′ + W ′′ , D′

i = GetD(Di,W ′),
and D′′

i = GetD(Di,W). By Lemma 1, the theorem
holds if GetN(Di, path) �≡ GetN(D′′

i , path). Otherwise,
GetN(Di, path) �≡ GetN(D′

i, path) and thus function S such
that Sa[[p]]x(Di) �≡ Sa[[p]]x(D′

i) is called in the evaluation of path

on Di and D′
i. Then, there are a node y ∈ S a[[p]]x(Di) and a

node y′ ∈ Sa[[p]]x(D′
i) such that y �≡ y′. Moreover, by formula

(4.2), there is a node y′′ ∈ Sa[[p]]x(D′′
i) such that y′′ ≡ y′. Since

y �≡ y′′ , Sa[[p]]x(Di) �≡ Sa[[p]]x(D′′
i). �

By Theorem 1, using document D i and a document updated by
transactions, the conflict between R-access R i and previous W-
accesses of any subset of transactions can be detected. In our data
management, the updates by all previous W-accesses are reflected
in Dall. Thus, if an R-access Ri = Read(path) causes the R-
W conflict with previous W-accesses of any set of transactions, the
evaluation of path on Di and Dall must call a function S such that

Sa[[p]]x(Di) �≡ Sa[[p]]x(Dall). (4.4)

Hence, the R-W conflict of Ri is detected by checking formula (4.4)
when function S is called for the XPath evaluation. Note that this
is a sufficient condition for a conflict, i.e., the calling such function
S whose results are not equivalent does not necessarily lead to a

conflict. A more efficient sufficient condition for the conflict check
is omitted here (although we have some idea) but will be addressed
in future work. In addition, the equivalence check for function S
is reduced in the following way. Consider the case where func-
tion Sa[[p]]x(Di) recursively calls S ′a′

[[p′]]x′(Di) with x′ ∈ S.
As mentioned previously, if a node x ′ in document Di (Dall) is up-
dated, nodes in the subtree whose root is x ′ are also updated. Hence,
if axis（注1）a′ is for searching nodes in the subtree of context node x ′

and formula (4.4) holds, then S ′a′
[[p′]]x′(Di) �≡ S ′a′

[[p′]]x′(Dall).
Therefore, when functionS is recursively called by function S ′ with
such an axis, the equivalence check for S ′ can be omitted since the
conflict can be detected by the equivalence check for S.
［Example 2］ Consider that Ti requests an R-access Read(path)

with path=“flower[price<400]/name”. Suppose that D i equals to
the document shown in Fig. 2 and Dall equals to the document
shown in Fig. 3, which was updated by a previous W-access of
the other transaction. When path is evaluated on D i and Dall,
function Sa[[price]]x with a = child is called. The resulting
node, y, of S on Di is not equivalent to that on Dall, that is,
Sa[[price]]x(Di) �≡ Sa[[price]]x(Dall). Therefore, the conflict of
the R-access with the W-access is detected.

Here we define the boolean function Check(D,D ′, R) with two
documents D and D ′ and R-access R = Read(path) as follows:
Check = ok (1) if function S is called in the evaluation of path

such that the resulting nodes on D are not equivalent to the resulting
nodes on D ′; Check �= ok, otherwise. The following theorem then
holds.
［Theorem 2］ If an R-access Ri by a transaction Ti leads to the
R-W conflict, Check(Di, Dall, Ri) �= ok. �

The proposed algorithm for the R-W check is then as follows:
When a transaction Ti requests an R-access R i,

(1) Check if Check(Di, Dall, Ri) = ok.
(2) If it holds, then Ri causes no R-W conflict and thus T i

proceeds.
(3) Otherwise, Ri causes a R-W conflict with other transac-

tions. Find transaction Tj(i �= j,1 <= j <= n) that causes the
conflict with Ri, and block Ti until Tj finishes. When Tj finishes,
Ti restarts.

In the R-W check, XPath evaluation is processed in both D i and
Dall. The execution cost needed for the proposed algorithm is then
the sum of the cost for evaluating an XPath expression and the cost
for equivalence checks in the XPath evaluation. Equivalence checks
can be easily implemented by, for instance, sharing a pointer be-
tween equivalent nodes in distinct documents.

5. Write-Read Check

This section describes the proposed method for the W-R check.
Each time a W-access is requested, the W-R check is performed for
detecting the W-R conflict caused by the W-access, using D all un-
der our data management model.

Consider that a transaction Ti requests a W-access W i .
In our data management, Wi is performed to document Di,
and then Di is updated by Wi as a result. Let D′

i =

GetD(Di, Wi). Let Rj be a previous R-access by any other trans-
action Tj . By theorem 2, if Wi causes a conflict with Rj , then
Check(D′

j , Merge(D′
j , D

′
i), Rj) �= ok where D′

j denotes the pre-
vious state of Dj to that Rj was performed. When Wi is requested,

（注1）：Such axes in XPath are child, descendant, self, attribute, and namespace.

Dall
Tj

WS
j
(k)

WS
j
(k+1)

R
j

RS
j
(k)

D
j
(k)

D
j
(k+1)

Ti

W
i

D'
i

time t
1

time t
2

Dj

図 7 Example two transactions.

this conflict check for Wi is needed against each of all previous R-
accesses by any transaction T j(∈ T − {Ti}). Thus all the previous
states of Dj’s for each Tj are needed for the W-R check when T i

requests a W-access.
Two simple ways to obtain the previous states of D j’s are consid-

ered: one is storing all the previous states and the other is regenerat-
ing the previous states by performing previous updates again. How-
ever both of them are impractical if there are a number of concur-
rent transactions and updates due to memory and time consuming,
respectively. To overcome this deficiency, we present the method
for an efficient W-R check using previous states of D all instead of
using previous states of Dj for every transaction Tj .

5. 1 Write-Read Check using previous����’s
Consider a W-access Wi requested by Ti and a previous R-access

Rj in R-sequence RSj(k) (0 <= k <= wnj) of Tj . (Recall that
wnj is the current number of W-sequences of Tj .) Now we de-
fine the notation Dj(k) with (0 <= k <= wnj) as follows: if
k = 0, Dj(k) = Dst; otherwise, Dj(k) = GetD(Dst,W) where
W = WSj (1) + · · · + WSj (k). Then Dj(k) is equivalent to the
previous state of Dj to that R-access Rj in RSj(k) is performed.
Hence, a conflict with Rj caused by Wi is detected by checking if

Check(Dj(k), Merge(D′
i, Dj(k)), Rj) �= ok. (5.1)

In the following explanation, we refer to Fig. 7, which illus-
trates an example of two transactions Ti and Tj . Suppose that W-
sequence WSj(k) finished and Dj and Dall were updated by the
last W-access in WSj(k) at time t1. Suppose also that the next W-
sequence WSj(k + 1) started right after time t2. Document Dj(k)

is then the state of Dj at any time t with t1 <= t <= t2. (Dj(k)

equals to the state of Dj in which updates until WSj(k) are re-
flected.) Let D′

all be the state of Dall at any time t(t1 <= t <= t2).
Document D′

all is the document state updated by all transactions
by time t, that is, D′

all is the document merging Dj(k) and all
Dl’s(l �= j, 1 <= l <= n) at time t. By Theorem 2,

Check(Dj(k), D′
all, Rj) = ok (5.2)

since Rj was checked not to lead to the R-W conflict when it is
requested. By formula (5.1) and equation (5.2), we obtain the fol-
lowing theorem.
［Theorem 3］ If a W-access Wi by a transaction Ti leads to the
W-R conflict, there is an R-access Rj in RSj(k)(0 <= k <= wnj)

by any other transaction Tj such that

Check(D′
all, Merge(D′

i, D
′
all), Rj) �= ok

where D′
i = GetD(Di, Wi) and D′

all is a previous state of Dall at
any time after WSj (k) and before WSj(k + 1). �

By Theorem 3, the W-R conflict caused by a requested W-access
with any R-accesses in RSj(wn′

j) can be detected by using the
previous state of Dall when wn′

j was the current number of W-
sequences of Tj .)

For the W-R check using previous states of D all, the states of
Dall then need either to be saved before updating or to be regener-
ated when checking the conflict. If all the previous states of D all

can be held, no write operations for regenerating the states of D all

is needed for the W-R check. However, it is hardly a practical so-
lution due to the limitation of memory resources. In the following,
the term snmax denotes the maximum number of states of Dall that
can be held in the system. We assume that the value of sn max can
be changed depending on the available size of memory. An algo-
rithm that determines snmax states of Dall providing large effects
on subsequent W-R checks is proposed in Section 5. 2.

In the following, the proposed method for the W-R check using
previous states of Dall is described. We define several notations for
the following explanation. The term s-point is used to indicate the
point of time that the state of Dall is saved.

• sn(<= snmax) : the current number of s-points.
• sp(h) (1 <= h <= sn) : the h-th s-point.
• Ds(h) : the state of Dall saved at s-point sp(h).
• wni(h) for each Ti : the value of wni at s-point sp(h).

We say that s-point sp(h) is set in write sequence WS i(k) for each
transaction Ti(∈ T) if k = wni(h).

For each R-sequence RS j (k)(1 <= k <= wnj), if there is s-
point sp(h) such that wni(h) = k, then the W-R check against
R-accesses in RSj(k) can be performed using Ds(h). Suppose
that there is no s-point sp(h) such that wnj(h) = k. There are
two cases to be considered. The first case is that there is s-point
sp(h′) such that wnj(h

′) = k′ where k′ is the maximum value with
k′ < k. The second case is that there is no such s-point sp(h ′). In
the first case, the updates until W-sequence WS j(k

′) are reflected
in Ds(h

′). Let D′
j be the state of Ds(h

′) in which the updates by
Tj from WSj(k

′ + 1) to WSj(k) are also reflected. In the second
case, let D′

j be the state of Dst in which the updates by Tj until W-
sequence WSj (k) are reflected. Then, in the both cases, the W-R
check against R-accesses in RS j(k) can be performed using D ′

j .
The proposed algorithm for the W-R check is then as follows:

When a transaction Ti requests a W-access W i ,
(1) Prepare D which is a copy of document D st, and prepare

D′
i which is the state of Di updated by Wi.

(2) For each transaction Tj(∈ T − {Ti}), execute ac-
cesses from the first R-sequence to the R-sequence just before
WSj(wnj(1)), i.e, the W-sequence in which the first s-point is set.

(2.1) If the access is W-access Wj , reflect the update by Wj in
document D.

(2.2) If the access is R-access Rj , then check if Check(D,

Merge(D′
i, D),Rj) = ok. If it holds, then Wi does not conflict

with Rj , and thus go (2) and execute the next access. Otherwise,
Wi conflicts with Rj , and thus block Ti until Tj finishes. When Tj

finishes, Ti restarts.
(3) For each s-point sp(h) with 1 <= h <= sn,

(3.1) Prepare D which is a copy of document D s(h).
(3.2) For every transaction Tj and every R-access R j in

RSj(wnj(h)), check if Check(D, Merge(D′
i, D),Rj) = ok. If

not so, Wi conflicts with Rj and thus block Ti until Tj finishes.
When Tj finishes, Ti restarts.

(3.3) For each transaction Tj , if an s-point is not set
in W-sequence WSj(wnj(h) + 1), execute accesses from
WSj(wnj(h) + 1) to the R-sequence just before the W-sequence
in which s-point sp(h + 1) is set or to the latest R-sequence.
(3.3.1) If the access is W-access Wj , reflect the update by Wj in
document D.
(3.3.2) If the access is R-access Rj , then check if Check(D,

Merge(D′
i, D),Rj) = ok. If it holds, then Wi does not conflict

with Rj , and thus go (3.3) and execute the next access. Otherwise,
Wi conflicts with Rj , and thus block Ti until Tj finishes. When Tj

finishes, Ti restarts.
The pseudo code of the proposed algorithm for the W-R check based
on s-points is shown in Appendix B. Steps 1, 2, and 3 in Appendix
correspond to parts (1), (2), and (3) of the above explanation, re-
spectively.

By using the states of Dall that are saved at s-points, the write op-
erations for generating previous states of Dall in subsequent W-R
checks are reduced. The number of write operations can be reduced
by each s-point sp(h) is referred as E(h) in the following section.
(The definition of E(h) and the determination of s-point sp(h) pro-
viding a large value of E(h) are given in Section 5. 2.) Let nrj and
nwj be the number of R-accesses and W-accesses in AS j , respec-
tively. In addition, let crj and cwj be the cost of performing an
R-access and evaluating function Check, and the cost of perform-
ing a W-access, respectively. When a W-access W i is requested, the
execution cost needed for the proposed W-R check on s-points is
then equal to

∑
1<=j<=n,i�=j

(nrj × crj + nwj × cwj)

−
(∑

1<=h<=snmax

E(h) −
∑

1<=g<=wni,wni(g) �=wni(g−1)

|WSi(g)|
)
× cwj .

5. 2 Determination of S-Points
This section presents the method to dynamically determine the

point of time to save the state of Dall. Since Dall is continuously
updated, we need to check if the current state of D all has a large
effect on subsequent W-R checks and to determine if setting an s-
point. In the following, the way to measure the effect of each s-
point, i.e. the effect obtained by Dall saved at the s-point is first
described and the algorithm to determine if setting an s-point or not
is next given.

Whenever a W-access is requested by transaction T i after s-point
sp(h), the use of Ds(h) can reduce

∑
1<=j<=n,j �=i

|WSj(wnj(h))|
write operations in the W-R check for the W-access. As a conse-
quence, it is considered that the effect obtained by saving the state
of Dall at s-point sp(h) is proportional to the sum of the numbers
of W-accesses in WSi(wni(h))’s with 1 <= i <= n. We define E(h)

of a s-point sp(h) as follows:



If h = 1, E(h) =
∑

1<=i<=n

|WSi(wni(h))|.

Otherwise, E(h) =
∑

1<=i<=n,wni(h) �=wni(h−1)

|WSi(wni(h))|.

When h = 1, i.e., the s-point is the first one, effect E(h) is the
sum of the numbers of W-accesses in the recent W-sequences of
all transactions. On the other hand, when h > 1, the number of
W-accesses in WSi(wni(h)) is not added to E(h) if wni(h) =

wni(h − 1). In that case, the W-R check against RSi(wni(h))

can be performed using either Ds(h) or Ds(h − 1). Thus we add

T2T1
Dall

Time t
1

Time t
2

Time t
3

Time t
4

T3

RS
1
(0)

WS
1
(1)

RS
2
(0)

RS
3
(0)

WS
2
(1)

WS
3
(1)

RS
1
(1)

RS
2
(1)

RS
3
(1)

WS
1
(2)

WS
2
(2)

RS
2
(2)

Dst

D(1)

D(2)

D(3)

D(4)

図 8 Example concurrent transactions.

|WSi(wni(h))| to the effect of the previous s-point, and not add to
E(h) to prevent redundancy.

In addition, we also define the reduced effect, E −(h), by delet-
ing s-point sp(h). For each s-point sp(h), E−(h) is computed as
follows: Initially, E−(h) = E(h). For each Ti ,

(1) If sp(h) is not the latest, (wni(h) = wni(h + 1)), and
((h = 1) or (wni(h) �= wni(h− 1))), then reduce |WSi(wni(h))|
from E−(h). When deleting sp(h), |WSi(wni(h))| is then added
to E(h + 1).

(2) If sp(h) is the latest s-point and (wni(h) = wni), then
reduce |WSi(wni(h))| from E−(h). When deleting sp(h), |WSi

(wni(h))| is then added to the effect of a new s-point.
Using effects E(h) and E−(h) as the criteria, a new s-point is set
if its effect is larger than the previous s-point having the minimum
value, E−

min , of E−(h)(1 <= h <= snmax). In the following, spmin

denotes the previous s-point having E −
min .

We present the proposed method that determines sn max s-points
that provide large effects. Right before Dall is updated by W-
accesses in a new W-sequence, the proposed determination of an
s-point is performed as follows:

(1) Calculate the increased effect, E+, by setting a new s-
point for saving the current state of Dall.

(2) If sn, i.e. , the current number of s-points is less than
snmax, set a new s-point and its effect E+.

(3) Otherwise, compare E+ with E−
min . Iff E+ is larger

than E−
min , delete s-point spmin and set a new s-point sp(snmax).

If spmin is not the latest s-point, effect E(snmax) of the new
s-point is equal to E+. Otherwise, E(snmax) = E+ + e(=

E(spmin) − E−
min) where e is the effect added to the next s-point

when s-point spmin ie deleted.
The pseudo code of the proposed algorithm to determine s-points is
shown in Appendix C. Steps 1, 2, and 3 in Appendix C correspond
to parts (1), (2), and (3) of the above explanation, respectively.

Since a new s-point is always set only when the increased effect
by the new s-point is larger than the minimum effect decreased by
deleting a previous s-point, the s-point schedule by the proposed al-
gorithm is optimal under the given time-ordered write sequences of
transactions.
［Example 3］ We illustrated the determination of s-points for the
example transactions shown in Fig. 8. In Fig. 8, each times t 1, t2, t3,
and t4 denote the times right before WS1(1), WS3(1), WS2(2),
and WS1(2), respectively. Document D(i) with 1 <= i <= 4 denotes
the state of Dall at time ti. Assume snmax=2. In Fig. 9, we show
the scheduling of s-points at each time t i(1 <= i <= 4) and the infor-
mation of s-points, i.e. wni(h) for each transaction Ti(1 <= i <= 3),

(1) at time t1
sp(h) wn1(h) wn2(h) wn3(h) E(h) E−(h) Ds(h)
sp(1) 0 1 0 1 - D(1)

(2) at time t2
sp(h) wn1(h) wn2(h) wn3(h) E(h) E−(h) Ds(h)
sp(1) 0 1 0 1 0 D(1)
sp(2) 1 1 0 3 - D(2)

(3) at time t3
sp(h) wn1(h) wn2(h) wn3(h) E(h) E−(h) Ds(h)
sp(1) 0 1 0 1 0 D(1)
sp(1) 1 1 0 4 0 D(2)
sp(2) 1 1 1 2 - D(3)

(4) at time t4
sp(h) wn1(h) wn2(h) wn3(h) E(h) E−(h) Ds(h)
sp(1) 1 1 0 4 0 D(2)
sp(1) 1 1 1 6 1 D(3)
sp(2) 1 2 1 2 - D(4)

− means that the reduced effect is not determined yet.

図 9 An example s-point schedule.

effect E(h), and Ds(h) saved at s-point sp(h).
At times t1 and t2, s-points are set because two(=snmax) s-points

can be set. When the first s-point sp(1) is set, D(1) is saved as
Ds(1) and effect E(1) is 1(=wn1(1)+wn2(1)+wn3(1)), as shown
in Fig. 9(1). As shown in Fig. 9(2), when the second s-point sp(2)

is set, D(2) is saved as Ds(2). Effect E(2) equals to 3(=wn1(2))
since wn2(1) = wn2(2) and wn3(1) = wn3(2).

At time t3, the number of s-points equals to snmax, and thus it
is necessary to determine whether a new s-point is set and s-point
spmin(= sp(1)) is deleted. Effect E−(1) reduced by deleting
sp(1) equals to 0 since wn2(1) is added to effect E(2) of s-point
sp(2) when deleting sp(1). Effect E+(= 2) increased by setting a
new s-point is larger than E−

min(= E−(1)), and thus a new s-point
is set as shown in Fig. 9(3). At time t4, s-point spmin is sp(1) and
effect E−(1) equals to 0. Effect E+(= 2) increased by setting a
new s-point is larger than E−(1), and thus a new s-point is set as
shown in Fig. 9(4).

6. Conclusion

In this paper, we proposed a new locking method guaranteeing se-
rializability which supports general XML documents and full XPath
Query. The proposed method resolves the phantom problem by
adopting a logical locking approach and achieves high concurrency
by producing locking at the level of precise data in XML documents.
In the proposed method, locks are set on XPath expressions used in
transaction accesses and conflicts between the XPath expressions
and the updates by different transactions are checked to ensure se-
rializability. To detect conflicts efficiently, we introduced a new
data management model, which handles two versions of a docu-
ment: document Di in which updates by each transaction T i are
reflected and document Dall in which updates by all transactions
are reflected. Under our data management model, conflict checks
are performed based on XPath evaluation. As for the read-write
check when a transaction T i requests a read access, XPath expres-
sion used in the read access is evaluated on documents D i and Dall

and the equivalence of nodes in both documents which are reachable
by the expression is checked. As for the write-read check, previ-
ous states of Dall saved at s-points are used. A dynamic algorithm
to determine s-points providing large effects on subsequent write-
read checks was also proposed and the proposed s-point schedule
was shown to be always optimal in terms of the effect. To evaluate
the proposed algorithms for the read-write check and the write-read
check, we performed the qualitative analysis of computing costs and

confirmed the effectiveness. The implementation of the proposed
method and the quantitative analysis of execution times and mem-
ory sizes needed for the proposed locking should be included in
future works.

Reference

[1] R. Bourret, “XML and databases,” Internet Document, February
2002, http://www.rpbourret.com/xml/
XMLAndDatabases.htm.

[2] T. Bray, J. Paoli and C. M. Sperberg-McQueen, “Extensible markup
language (XML) 1.0.,” W3C Recommendation, February 1998,
http://www.w3.org/XML.

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie and
J. Simeon, “XQuery 1.0: An XML Query Language,” W3C Working
Draft, August 2002, http://www.w3.org/XML/Query.

[4] J. Clark and S. DeRose, “XML Path Language (XPath) 1.0.,” W3C
Recommendation, November 1999, http://www.w3.org/TR/
xpath.

[5] K. P. Eswaran, J. Gray, R. Lorie and I. Traiger, “The notions of con-
sistency and predicate locks in a database systems,” Comm. of ACM,
Vol. 19, No. 11, pp. 624–633, November 1976.

[6] T. Grabs, K. Böhmd and H. Schek, “XMLTM: efficient transaction
management for XML documents,” Proc. of the 19th CIKM Confer-
ence, pp. 142–152, 2002.

[7] P. Gray and A. Reuter, “Transaction processing: concepts and tech-
nology,” Morgan Kaufmann, 1993.

[8] J. R. Jordan, J. Banerjee and R. B. Batman, “Precision locks,” Proc.
of ACM SIGMOD International Conference on Management of Data,
pp. 143–147, April 1981.

[9] D. B. Lomet, “Key range locking strategies for improved concur-
rency,” Proc. of the 19th VLDB Conference, pp. 655–664, 1993.

[10] P. Wadler, “Two semantics for XPath,” Technical report, January
2000, http://www.research.avayalabs.com/user/
wadler/papers/xpath-semantics.

Appendix

A. Semantics of XPath [10]
S : Axis → Pattern → Node → Set(Node)
Sa[[p1|p2]]x = Sa[[p1]]x ∪ Sa[[p2]]x
Sa[[/p]]x = Sa[[p]](root(x))
Sa[[p1/p2]]x = {x2 |x1 ∈ Sa[[p1]]x, x2 ∈ Sa[[p2]]x1}
Sa[[a1 :: p1]]x = Sa1 [[p1]]x
Sa[[n]]x = {x1 |x1 ∈ A[[a]]x, nodetype(x1) = P[[a]],

name(x1) = n}name(x1) = n}
Sa[[*]]x = {x1 |x1 ∈ A[[a]]x, nodetype(x1) = P[[a]]}
Sa[[text()]]x = {x1 |x1 ∈ A[[a]]x, nodetype(x1) = Text}
Sa[[p[q]]]x = let S1 = Sa[[p]]x in

let n = size(S1) in
{x1 |

x1 ∈ S1
let j = size({x2|x2 ∈ S1, x2 <=doc x1}) in
let k = (if D[[a]] = forward then j else n + 1 − j)
in Q[[q]](x1, k, n)}

Q : Qualifier → (Node, Number, Number) → Boolean
Q[[q1 and q2]] = Q[[q1]](x, k, n) ∧ Q[[q2]](x, k, n)
Q[[q1 or q2]] = Q[[q1]](x, k, n) ∨ Q[[q2]](x, k, n)
Q[[not(q)]] = ¬Q[[q]](x, k, n)

Q[[p]](x, k, n) = Schild[[p]]x |= ∅
Q[[e1=e2]](x, k, n) = E[[e1]](x, k, n) = E[[e2]](x, k, n)

E : Expr → (Node, Number, Number) → Number
E[[e1 + e2]](x, k, n) = E[[e1]](x, k, n) + E[[e2]](x, k, n)
E[[e1 * e2]](x, k, n) = E[[e1]](x, k, n) × E[[e2]](x, k, n)
E[[position()]](x, k, n) = k
E[[last()]](x, k, n) = n
E[[i]](x, k, n) = i

B. Algorithm for the write-read check based on s-points

/* Step 1: initialization */
Wi := the requested W-access by Ti
D := Dst ;
D′

i := GetD(Di, Wi);

/* Step 2: the W-R check for the first R-sequence */
For each Tj with j |= i and 1 <= j <= n

lend := 0;
IF (sn = 0) Then lend := wnj
Else IF (wnj (1) |= 0) lend := wnj(1) − 1;
For (l := 0 to lend ; l := l + 1)

For each R-access Rj in RSj(l)
IF Check(D, Merge(D′

i, D), Rj) |= ok Then

Add edge (Tj → Ti) to the wait-for graph;
Check deadlock; Exit;

End IF
End For
IF (l |= lend) Then

For each W-access Wj in W Sj(l + 1)
D′ := GetD(D′, Wj);

End For
End IF

End For
End For

/* Step 3: the W-R check based on s-points */
For (h := 1 to sn; h := h + 1)

For each Tj with j |= i and 1 <= j <= n
IF ((h = 1) or (wnj (h) |= wnj (h − 1))) Then

IF (h = sn) Then lend := wnj
Else IF (wnj (h) = wnj(h + 1)) Then lend := wnj(h)
Else lend := wnj (h + 1) − 1;
D := Ds(h);
For (l := wnj (h) to lend ; l := l + 1)

For each R-access Rj in RSj(l)

IF Check(D,Merge(D, D′
i), Rj) |= ok Then

Add edge (Tj → Ti) to the wait-for graph;
Check deadlock, Exit;

End IF;
End For
IF (l |= lend)) Then

For each W-access Wj in W Sj(l + 1)
D′ := GetD(D′, Wj);

End For
End IF;

End For
End IF

End For
End For

C. Algorithm for the determination of s-points

E−
min := the minimum value of E−(h) with 1 <= h <= sn;

sp(m) : = spmin, i.e. the s-point having E−
min ;

For each Ti with 1 <= i <= n
wni(0) := 0; |W S(wni(0))| := 0; /* initialization */

/* Step 1: computing effect E+ increased by a new s-point
and effect E− reduced by deleting the latest s-point */

E+ := 0;
IF (sn > 0) E− := E(sn);
For each Ti with 1 <= i <= n

IF (wni(sn) |= wni) Then E+ := E+ + |W Si(wni)|
Else IF ((sn = 1) or ((sn > 1) and (wni(sn) |= wni(sn − 1)))

E− := E− − |W Si(wni)|;
End For

/* Step 2: setting a new s-point */
IF (sn < snmax) Then

sn := sn + 1;
For each Ti with 1 <= i <= n

wni(sn) := wni ;
E(sn) := E+ ; /* set the effect of new s-point sp(sn) */
Ds(sn) := Dall; /* save the current state of Dall */
/* set the reduced effect by deleting the previous s-point */
IF (sn > 1) E−(sn − 1) := E− ;
IF ((sn = 1) or (E−(sn − 1) < E−

min)) Then /* determine spmin */
E−

min := E−(sn − 1); m := sn − 1;

/* Step 3: comparing a new s-point with spmin */
Else

/* determining spmin */
IF (E− < E−

min) Then
E−

min := E− ; m := sn;
Else E−(sn) := E− ;
/* setting a new s-point and deleting spmin */
IF (E+ > E−

min) Then
/* recalculate the effect */
IF (E(m) − E−

min > 0)
IF (spmin = sp(sn)) Then E+ := E+ + (E(m) − E−

min)

Else E(m + 1) := E(m + 1) + (E(m) − E−
min);

End IF
/* delete spmin */
For (h := m + 1 to snmax; h := h + 1)

Replace sp(h) to sp(h − 1);
/* set new s-point sp(sn) */
IF (m < sn) Then E−(m) := E(m);
IF (m > 1) Then E−(m − 1) := E(m − 1);
For each Ti with 1 <= i <= n

wni(sn) := wni ;
IF ((m < sn) and (wni(m) = wni(m + 1)))

IF ((m = 1) or (wni(m) |= wni(m − 1))) Then
E−(m) := E−(m) − |W Si(wni(m))|;

IF ((m > 1) and (wni(m − 1) = wni(m)))
IF ((m > 2) and (wni(m − 1) |= wni(m − 2))) Then

E−(m − 1) := E−(m − 1) − |W Si(wni(m − 1))|;
End For
E(sn) := E+ ; /* set the effect of a new s-point */
Ds(sn) := Dall; /* save the current state of Dall */

End IF
End IF

