DEWS2003 3-B-02

Design of Secondary Storage Predicate Index for Publish/Subscribe
System

Botao WANGT, Wang ZHANG', and Masaru KITSUREGAWA

1 Institute of Industrial Science, The University of Tokyo,
135-8505 Japan
E-mail: {{botaow,zhangw kitsure}@tkl.iis.u-tokyo.ac.jp

Komaba 4-6-1, Meguro Ku, Tokyo,

Abstract Efficient event matching algorithms are the core of publish/subscribe systems which require both
fast search as well as efficient support for dynamic insertions and deletions. Such algorithms are typically
designed based on memory structure for performance reasons. Given the explosive growth of information, it
is not always practically feasible to keep the index for event filtering memory-resident, thereby necessitating
the need for a secondary storage structure. To address this problem, we propose a B+tree-based predicate
index for secondary storage structure with space complexity O(n) and time complexity O(log n) for search,
insertion and deletion operations. The main idea is that grouping predicates by their operators (<, =, | =,

>) to share computation and for each pointer inside B+tree, a pointer flag that indicates the types(groups)

of predicates which are kept in the leaf nodes, is added for search operation.
Key words Predicate Index, Event Matching, Publish/Subscribe System

1. Introduction

The rapid growth of technology has considerably
changed the manner and scale of information manage-
ment. Users can find and provide information easily
through brokers like the Web; at the same time, in vari-
ous applications, such as stock tickers, traffic control, net-
work monitoring, Web logs and clickstreams, and Sensor
networks, input data arrive as continuous ordered data
streams [18]. There is a growing necessity for systems to
be able to capture the dynamic aspect of information.
Publish/subscribe systems provide subscribers with the
ability to express their interests in an event in order to
be notified afterwards of any event fired by a publisher,
matching their registered interests. In other words, pro-
ducers publish information on publish/subscribe systems
and consumers subscribe to their desired information [8].

The precursor to publish/subscribe systems was
subject-based. In such systems, information consumers
subscribe to one or more subjects and the system notifies
them whenever an event classified as belonging to one of
their relevant subjects is published. A representative ex-
ample of such a system is a mailing list. Thousands of
mailing lists exist, encompassing a wide variety of topics.

The user subscribes to lists of his/her interests and re-

ceives messages via mail. However, it offers only limited
expressiveness. Given its coarse classification of topics, it
provides only a crude granularity of interest matching,
thereby resulting in the user receiving either too many
irrelevant or too few relevant messages.

As an attractive alternative to subject-based pub-
lish/subscribe systems, content-based publish/subscribe
systems typically introduce subscription schemes based
Notably,

events are not classified according to some pre-defined

on the properties of the given notifications.

subject name, but according to properties of the event
themselves. For example, a content-based system for a
stock market may define a subscription schema as a tu-
ple containing three attributes: CompanyName, Price
and ChangeRatio with string, float and float types re-
spectively. The user can choose stock information by the
values of attributes not by subject Stock only.

The cost of the gain in expressiveness of content-based
system is an increase in the complexity of the matching
process. The efficiency of matching highly depends on
matching algorithms. Input data arrive as data stream
and the subscriptions are inserted and deleted dynami-
cally.

As far as we know, in the context of publish/subscribe

system, many matching algorithms are generally pro-

posed based on memory structure [1][4][9][10][14] [17]
[19]. As pointed in[18], input data arrive in form of data
stream, it’s very difficult to keep all the index data in the
memory practically. At the same time, for the similar-
ity of operations(range or interval query), some search-
ing algorithms designed for active database[12], spatio-
temporal database[3][6][7][11] can be applied to pub-
lish/subscribe system, those algorithms are not designed
originally for publish/subscribe system. They lack flex-
ibility of insertion and deletion and don’t support rela-
tional operator ”!=" directly.

In this paper, we proposed a secondary storage predi-
cate index structure based on B+tree for efficient event
matching. The rest of this paper is organized as follows.
Section 2 formally defines the event matching problem.
Section 3 introduces the related work. Section 4 describes
our proposed predicates index structure: PB+tree and
event matching algorithm in this context. In Section 5,
analytical comparisons between our proposed algorithm
and existing techniques are made. Finally, conclusion is

given in Section 6.
2. Event Matching Model

The event matching problem can be expressed as fol-
lows. Given an event e and a set of subscriptions S, de-
termine all subscriptions in S that are matched by e. A
subscription is a conjunction of predicates. A predicate
is a triple consisting of an attribute, a constant, and a re-
lational operator (<, <=, =, |=, >=, >). A subscription
schema defines the type of the information to be sup-
ported by publish/subscribe system. The attributes are
defined in subscription schema. For example, three at-
tributes: CompanyName, Price and ChangeRatio with
string, float and float types respectively can be defined
for stock market. Following is a subscription exam-
ple of stock schema, (CompanyName = Yahoo) AND
(Price>1000) AND (ChangeRati0<0.05). An event is
an array of pairs of (Attribute, Constant). The size of
array depends on subscription schema. Following is an
event example of stock schema, (CompanyName, Intel),
(Price, 5000), (ChangeRatio, 0.03). An event e matches
a subscription S if all predicates in S are satisfied by
some (Attribute, Value) pairs in e. For example, event
(CompanyName, Yahoo), (price, 500), (ChangeRatio,
0.1) matches following subscription which is expressed
as a conjunction of two predicates: (CompanyName =
Yahoo) AND (Price < 1000).

Event matching algorithms in content-based pub-
lish/subscribe systems can be classified into two cate-

gories:

The algo-

rithms based on predicate indexing consist of two steps:

e Algorithms based on predicate index.

— The first step determines all predicates that are sat-
isfied by the event.

— The second step finds all subscriptions that are
matched by the events based on the results of the first
phase.

Algorithms based on predicate indexing techniques use
a set of one-dimensional index structure to index predi-
cate in the subscriptions. They differ from each other by
the way to select predicates from subscriptions, which are
kept in the index structures [4] [9] [10] [12] [14] [17] [19].

Basically, the predicates are grouped based on all sub-
scriptions. A predicate family consists of predicates hav-
ing the same attribute. For each attribute, one predi-
cate index is built. For example, for stock schema intro-
duced previously, three predicate indexes will be built for
CompanyName, Price, ChangeRatio.

e Algorithm based on subscription index [1] [15]. The
techniques based on subscription index insert subscrip-
tions into a matching tree. Events enter the tree from root
node and are filtered through by intermediate nodes. An
event that passes all intermediate testing nodes reaches
leaf nodes where references of matching subscriptions are
stored.

Our proposed data structure is designed for predicate
index. Although, there are many proposals for selection
of predicates from subscriptions. [9] [10][12] [19], the pred-
icate index is essential while determines all the predicates
that are satisfied by the event at the first step. From next
introduction, we will concentrate on the predicate index
for one predicate family without considering about the
second step. For details of different methods of predi-
cates selection, please refer to [9][10][12][19].

3. Related Work

A lot of algorithms related to event matching have been
proposed. Some are proposed for publish/subscribe sys-
tems [1][9][10] [16] [15] [19] and continuous queries [4] [5]
[18]; Some are proposed for active database [12][13][14],
spatio-temporal database[3][7][11].

In[9][10] [19], predicate indexs are built. The algorithm
consist of two phases: the first step gets satisfied predi-
cates, the second step collects matching subscriptions ac-
cording to the results of the first step. In[9], three pred-
icate indexes are built for operators (=, >, <). For =
operator, hash table or binary search can be used. For >
and < operator, binary search trees are used. In[9], hash
table is used to build index for predicates with = opera-

tor. [19] is a information Dissemination System(IDS) for

document filtering. There, predicate index is a inverted
list which is built based on the vocabularies used in pred-
icates.

Different from predicate index, [1] and[15] built sub-
scription tree based on subscription schema. In[1], each
non-leaf node contains a test, and edges from the node
represent results of that test. The test and result cor-
responds to predicate. A leaf node contains a subscrip-
tion. The matching is to walk the matching tree by per-
forming the test prescribed by each node and following
the edge according to the result of test. if number of
matched subscription is greater then one, multiple paths
will be walked. In [15], Profile(subscription) tree is built,
the height of tree is number of attributes defined in sub-
scription schema. Each non-leaf level corresponds to one
attribute of event schema. Each attribute domain is di-
vided non-overlapping subrange by the value of predicate.
One leaf node contains multiple subscriptions whose pred-
icates are satisfied by the values of attributes in the sub-
ranges. There is only a single path to follow in order to
find the matched subscriptions.

In[12][13][14], algorithms related to rule management
were proposed. The key component of the algorithm
in[12] is the interval binary search tree(IBS-tree). The
IBS-tree is designed for efficient retrieval of all intervals
that overlap a point, while allowing dynamic insertion
and deletion of intervals. In[13], the same idea of IBS-
tree is implemented by skip lists. ” Expression Signature”
is designed to group subscriptions and share computation
in [14].

Event filtering is critical step of continuous queries. In
[5], Expression Signature is used to group queries for com-
putation sharing. In [17], four data structures: a greater-
than balanced binary tree, a less-than balanced binary
tree, an equality hash-table, and an inequality hash-table
were built(we call them data structure Group Filter in
Section 5). The structures are similar to that of[9], but
inequality operator(!=) is supported. In[4], predicate in-
dex is built based on Red-Black tree. Each node contains
five arrays that store queryIDs of the corresponding pred-
icates. Five relational operators (<, <=, =, >=, >) are
supported directly.

Because the range query of spatio-temporal database
uses operators (<, <=, >=, >) in the similar way of
predicate index, the related data structures can be used
to built predicate index. In[7], an index structure for
time interval is built. A set of linearly ordered indexing
points is maintained by a B+tree, and for each point, a
bucket of pointers refers to the associated set of intervals.

In[3], Interval B+tree is built and the lower bounds of

the intervals are used as primary keys. Multi-dimensional
Rtree[11] and its variants may not behave well for one-

dimensional interval for the reason of overlap of interval.

4. PB-+tree: Predicate Index Based On
B+ttree

In this section, we will introduce our predicate index
based on B+tree. We call it PB+tree.

4.1 Motivation

B+tree is a popular index structure for secondary stor-
age. Besides its simplicity of implementation and main-
tenance, all the data are kept in the leaf nodes which are
linked in an order list. Our idea is that build a predicate
index for secondary storage based on B+tree and make
use of the order of leaf node list to share computation. At
the same time, all the predicates of one predicate family
are kept in one data structure and support relational op-
erators (<, <=, =, >=, >, |=) directly.

4.2 Structure of Predicate Index

The basic structure of predicate index is shown in
Fig.1. The constant defined in predicate is used as key of
B+tree. As shown in Fig. 1, data structure of B+tree is
extended and three lists are added below leaf node list of

B+tree.

Non-Leaf nodes

Extended B+tree
S.ﬁ‘ﬁnﬁ&‘&‘ﬁ'& Leaf node list
"@ @ Inequality List

GreaterThan List

LessThan List

Figure 1 Basic Structure of Predicate index

Pointer inside Extended B+tree As shown in Fig.
2, pointer flag is added to every pointer pointing to child
node in original B+tree. Pointer flag is a 3 bits array
and each bit corresponds to one kind of predicates. If bit
value is 1, it means that the predicates with correspond-
ing type(GreaterThan, LessThan, Inequality) are kept in
the leaf node of its subtree. The flag is used to guide
search operation.
Nonleaf Node of Extended B+ttree Fig.3
shows the nonleaf node structure of extended B+4tree. A
head is added to original B+tree’s nonleaf node.
GreaterThan Counter records number of pointers whose
GreaterThan bits are 1. It’s used to fast operation of in-

sertion and deletion.

Pointer flag Pointer pointing to child

GreaterThan Bit LessThan Bit Inequality Bit

Figure 2 Pointer Structure Inside Extended B+tree

First GreaterThan Pointer is the first pointer whose
GreaterThan bit is 1 in the node. The key related
to this pointer is the smallest among the keys re-
lated to the pointers with GreaterThan Bits value 1.
Last GreaterThan Pointer is the last pointer whose
GreaterThan bit is 1 in the node. The key related to this
pointer is the largest among the keys related to pointers
with GreaterThan Bits value 1. They are used to fast
search introduced in Fig. 13

The definitions of LessThan and Inequality parts in the
head are similar to those of GreaterThan.

Notice that, there is only one inequality related field:
Inequality Counter, because Inequality list doesn’t re-

quire order.

Head of Node

Pointer0| Key0 | Pointerl| PointerN| KeyN | PointerN+1
PG 1 N 1R Gy 1 TFC S
GreaterThan |G earerThan | GreaterThan “f Gounter | | LT [LessThan | counter
Counter " i -1 Pointer
...... Pointer Pointer e Pointer e

Greater Than Related LessThan Related Inequality Related

Figure 3 Node Structure of Extended B+tree

Leaf Node of Extended B+tree As shown in Fig.1,
three lists are added below leaf node list of B+tree. The
nodes on the lists are pointed by the pointers in leaf nodes.
The data structure of original B+tree leaf node is ex-

tended as shown in Fig.4

Head of Node

.- PriviousPointef Item0 | Iteml] ... ItemN | NextPointer|

KeyN
ety Sase
Counter 1. Counter | Counter INEQPointer
GTPointer
L TPointer

Figure 4 Data Structure of Leaf Node of

The definitions of PreviousPointer, Key and next-

Pointer are same as those in B+tree respectively. The
SidSet is set of subscriptions which contain predicate
in the form Attribute = Key, Attribute <= Key or
Attribute >= Key . INEQpointer, GTPointer. LT-
Pointer are the pointers of Inequality list, GreaterThan
list and LessThan list respectively. They are entry points
to get results of predicate search according to input key.
The value of each above pointer will be set Null if the
predicate with corresponding operator and key doesn’t
exist. Notice that, besides equality operator (=), the Ids

of subscriptions with predicate containing operators(<=,

>=), are kept inside item of leaf node too.

Leaf node list

[

Sidset

Sidset

previousPointer | _nextPointer previousPointer | nextPointer

Inequality list

Figure 5 Data Structure of Node of Inequality List

Inequality List Inequality list is a list to deal with
predicates with operators (!=). The data structure of its
node is shown in Fig.5. It is used to match predicate in
the form Attribute! = Key. SidSet is ID set of subscrip-
tions which contain predicate Attribute! = Key. Double
links are defined for search, insertion and deletion. Head
pointer and Tail pointer are predefined before the index is
created. previousPointer and nextPointer point to nearby

node in two directions.

Leaf nodelist

Keyi Keyitn

SidSet Sidset

previousPointer | nextPointer previousPointer

nextPointer

GreaterThan list

Figure 6 Data Structure of Nodes of GreaterThan List

GreaterThan List GreaterThan list is an order list
to deal with predicates with operators (>,>=). The
data structure is same as that of Inequality List. Here,
SidSet is ID set of subscriptions which contain pred-
icate Attribute > Key or Attribute >= Key. For
two GreaterThan predicates with different constants, the
range represented by one predicate will totally cover an-

other. It is determined by the value of the constant. For

example, Attribute > 10 is true means Attribute > 5 is

true too. This property is used to share computation by
get results from the point with the biggest cover. Same as
original B+tree, the keys in one node and the nodes in the
list are arranged in ascending order of the key. Previous-
Pointer is the pointer pointing to the GreatThan list node
with keys less than those of current node. NextPointer
points to GreaterThan list node with keys greater than
those of current node.

LessThan List LessThan list is an order list to deal
with predicates with operators (<, <=). It has similar
data structure with GreaterThan list.

Sample Subscriptions Root

S1| a<i
S2| a>3
S3| a5
S4| a=3

S5| a>15

s6| a<2 11213
S4

Nonleaf node 1
Pointer flag

e foin]

Leaf node 1

Pointer flag

Leaf node 2

le——> 5] 6 «—>{ 10| 11 e 14| 15

S7| a6

S8 | a<10

S9 | a<il
S10| a<14
S11| al=6
Inequality List

s11)

..... l}@@«@.:‘.@.

LessThan List <o
T e G

—— Link of Leaf Node

GreaterThan List

e Link Of Inequlity List seseeeees # Link of GreaterThan List ~ =====p Link of LessThan List

Figure 7 Example of Predicate Index

4.3 Searching Algorithm

An example of predicate index tree is shown in Fig.7.
In order to be easy to understand, there is no duplication
of predicates in the example.

Because there are mainly four kinds of predicates
(Equality, Inequality, GreaterThan, LessThan), there are
maximum four search paths(Equality path, Inequality
path, GreaterThan path, LessThan Path) corresponding
to four kinds of predicates. The four search paths start
at root node and end at same/different leaf nodes. The
leaf nodes on the search paths are called EntryNode.
The item in NntryNode which is used as starting point
to collect results is called EntryItem. In the case that
four search paths end at more than one leaf node, the
node where search paths split, is called BranchNode.
Naturally, Equality path is same as search path of orig-
inal B+tree. The other three paths depend the results
of Equality path. For each search path, there exists one
pointer pointing to its BranchNode. If there is not search
path splitting (same as Equality path), the pointer of cor-
responding BranchNode is Null.

According to the sample shown in Fig.7, given

InputKey is 5,

e Equality Path The Equality path is { Root, Non-
leaf node 1, Leaf node 2 }, which is same as search path of
original B+tree. Its Entryltem with key 5 on Leaf node
2.

e Inequality Path The Inequality path is {Root,
Nonleaf node 1, Leaf node 2}. The results on Inequality
list is total Inequality list, because the INEQPointer of
item with key 5 is Null. The pointer of its BranchNode
is Null. Its Entryltem with key 5 on Leaf node 2.

o GreaterThan Path The GreaterThan path is
{Root, Nonleaf node 1, Leaf node 2}. The results on
GreaterThan list are nodes between Head and S3. The
pointer of its BranchNode is Null. Its Entryltem is the
one with key 5 on Leaf node 2.

o LessThan Path The LessThan path is {Root,
Nonleaf node 1, Leaf node 1}. As shown in Fig.7, the
LessThan Bit of the pointer pointing to Leaf node 2 is
0. So from Nonleaf node 1, it can be found that there is
no LessThan predicate on Leaf node 2, the search paths
should split here. The results on LessThan list are nodes
between S6 and Tail. Its Entryltem is the one with key 2
on Leaf node 1. The pointer of its BranchNode is Nonleaf
node 1.

In above example, Nonleaf node 1 is BranchNode be-
cause search paths split there; Leaf node 1 and Leaf node
2 are EntryNodes.

The main search algorithm of PB+tree is shown in Fig.
8.

Sear ch(InputKey, Root,Result)

/lInput:

I InputKey: input data from event,

1 Root: root of B+tree

/[Output:

1 Result: Pointer of Set of Sid

Reset Result, BranchNodeOf InequalityPath

BranchNodeOfGreater ThanPath And BranchNodeOfLessThanPath

1/ set pointer of above variables to be Null

EntryNode = GetEqualityPr edicates(InputKey, Root,Result)

10 //Get predicates realted to equality operation

Getl nequalityPr edicates(BranchNodeOfl nequalityPath,
EntryNode, InputKey, Result)

//Get predicates related to inequality

GetGreater ThanPr edicates(BranchNodeOfGr eater ThanPath,

15 EntryNode, InputKey, Result)

16 //Get predicates related to greater than operation

17 GetL essT hanPr edicates(BranchNodeOfLessThanPath,

18 EntryNode, InputKey, Result)

19 //Get predicates related to less than operation

©oO~NOO O WNEPRE

Al
A WN PR

Figure 8 Main Search Algorithm

Notice that in the case that search paths split, the
pointers of variables
BranchNodeO fInequalityPath,
BranchNodeO fGreaterT hanPath,
BranchNodeO f LessT hanPath

will be set inside function GetEqualityPredicates
shown in Fig.9.

GetEquality Predicates As mentioned in section 4.3,
equality path is same as that of original B+tree. Line 9
uses original algorithm of B+tree to find pointer for next
level. If expressions at line 10, 13 or 16 are true, it means
the search paths split here. So the pointer of correspond-
ing BranchNode should be kept for search of other types
of predicates. So deos the returned EntryNode of Equal-
ity Path at line 24.

GetEqualityPredicates(InputKey, Root, Result)
1 // Input:

2 /I InputKey: input data from event

3 /I Root: root of B+tree

4 //Output:

5/ Result: Set of Sid

6 / EntryNode: entry node of equality path

7 Assign Root to CurrentPointer

8 While CurrentPointer points nonleaf node

9 Get ChildPointer in the original way of B+tree search algorithm
10 If GreaterThan Bit of ChildPointer and CurrentPointer is different

11 Assign CurrentPointer to BranchNodeofGreater Than

12 Endif

13 If LessThanBitof ChildPointer and CurrentPointer is different
14 Assign CurrentPointer to BranchNodeofLessThan

15 Endif

16 If Inequality Bit of ChildPointer and CurrentPointer is different
17 Assign CurrentPointer to BranchNodeofl nequality

18 Endif

19 Assign ChildPointer to CurrentPointer

20 EndL oop

21 If InputKey isfound in the leaf node pointed by CurrentPointer

22 Add content of SdSetin item with key value InputKey into Result
23 Endif

24 Return CurrentPointer //return entry node of Equality Path

Figure 9 Algorithm of Function GetEqualityPredicates

GetInequality Predicates As shown in Fig.10, this
algorithm is relatively simple. If pointer of Branchnode
of Inequality is Null, it means it has possibility to get
Entryltem of Inequality list. If Entryltem is found, then
collect results from INEQPointer of Entryltem. In other
cases, all the nodes on Inequality list belong to result of
this search.
GetGreaterThanPredicates There are two cases in
Function shown in Fig.11.

e Case 1: It has same search path as Equality Path.
In this case, pointer of BranchNode of GreaterThan Path
is Null. GT Entryltem is Entryltem to collect results on
GreaterThan list and it is gotten at line 11 by function
GetGTEntryItem. The results are collected at lines
18-19.

o Case 2: It has different search path from Equality
Path.
In this case, the EntryNode of should be gotten first and
it is gotten by function GetGTEntryNode at lines14-

15. The others are same as case 1.

Getlnequality T hanPr edicates(BranchNodeOfl nequalityPath,
EntryNode, InputKey, Result)

/I Input:
1 BranchNodeOflnequalityPath: Pointer of branch node
1 of InequalityPath

/I EntryNode: EntryNode of Equality Path
/I InputKey: input data from event
/I Output:
/I Result: Set of Sid.
I
If (BranchNodeOflnequalityPath is Null
and InputKey isfound in EntryNode)
11 Add all nodes on Inequality list except the node

OO0 ~NOO UL WNE

=
o

12 corresponding to key InputKey into Result
13 Else

14 Add dl nodes on Inequality list into Result

15 Endif

Figure 10 Algorithm of Function GetlequalityPredicates

GetGreater ThanPr edicates(BranchNodeOfGr eater ThanPath,
EntryNode, InputKey, Result)

/Nnput:
I BranchNodeOfGreater ThanPath: Pointer of Branch node of
I GreaterThan Path

/I EntryNode: Pointer of entry node of equality path

I InputKey: input data from event

/1 Output

/I Result:set of Sid

1

1f BranchNodeOfGreater ThanPath is Null

10 //Operation onleaf node

11 GTEntryltem= GetGTEntryltem(InputKey, EntryNode)

12 Else

13 /I Operation on nonleaf node

14 GTEntryNode = GetGTEntryNode(I nputKey,

15 BranchNodeOfGr eater ThanPath)
16 GTEntryltem= GetGTEntryltem(InputKey, GTEntryNode)
17 Endif

18 Put nodes between head node and node pointed by GTPointer
19 of the GTEntrylteminto Result.

OO0 ~NOO U A~WNPRP

Figure 11 Algorithm of Function GetGreaterThanPredicates

GetGTEntryltem(InputKey, EntryNode)

1 //input:

2 /I InputKey:input data from event

3 /I EntryNode: Entry Node of GreaterThan search path

4 [[Output:

5 // Entryltem: Entry Item

6 Assign the item which contains the largest key among

7 the items whose GTPointers are not empty to Largestltem.
8 If (InputKey isgreater than the Key of Largestltem)

9 Return Largestltem.

10 Else

11 Search for GTEntryltem from Largetltemin descending

12 order on EntryNode. The GTEntryltemisthe last met
13 item whose key is greater than or equal to InputKey and
14 has no empty GTPointer.

15 Return GTEntryltem

16 Endif

Figure 12 Algorithm of Function GetGTEntryltem

In order to understand algorithm in Fig.12, please refer
to leaf node 2 in Fig.7, there Largestitem is item with
6. If InputKey is 7, then GT Entryltem is the item with
key 6 which is gotten by line 8-9. If InputKey is 5, then
GT Entryltem is the item with key 5 which is gotten by
linell-15.

GetGTEntryNode(InputKey, BranchNodeOfGreater ThanPath)

1 /linput:

2 /I InputKey: input data from event

3 /I BranchNodeOfGreater ThanPath: pointer of branch node of

4.1 GreaterThan Peth.
5 //Output:

6 // GTEntryNode: Entry Node of GreaterThan Path

7

8 Assign BranchNodeOfGreater ThanPath to CurrentNode

11 While CurrentNode is not leaf node

12 In CurrentNode, check all pointers whose GreaterThan Bitis 1,
get ChildNode on GreaterThan Path in the same way
asoriginal B+tree algorithm.

13 Assign ChildNode to CurrentNode

14 EndLoop

33 Return CurrentNode

Figure 13 Algorithm of Function GetGTEntryNode

Fig.13 shows the function to get EntryNode of

GreaterThan path. The algorithm is similar to search
algorithm of original B+tree. Because it is traverse of
GreaterThan path, so the difference is that only pointers
with GreaterThan Bit 1 will be used as candidates to be
checked to get child node.
GetLessThanPredicates Because algorithm of func-
tion GetLessThanPredicates has same idea as func-
tionGetGreaterThanPredicates, the details of the al-
gorithm is skipped.

4.4 Insert Algorithm

Insert algorithm has two main steps:

e Stepl: insert key to leaf node list. This procedure
is similar to that of original B+tree insertion. The extra
work is maintenance of pointer flag and information in
head of nodes.

e Step2: According to the operator of predicate, in-
sert ID of subscription into corresponding list. Because
the GreaterThan list and LessThan list are order lists, so
the algorithm to find Entryltem can be utilized to find
proper insertion point where the new node is inserted ac-
cording to ascending order of the key. The Inequality list
doesn’t require order, so the new node may be inserted
at Head node or Tail node of Inequality list.

4.5 Delete Algorithm

The delete algorithm is a reverse procedure of insertion.
It’s similar to deletion of original B+tree. The details are

skipped here.
5. Analytical Comparison

Assume the number of unique predicate is n and the
total number of predicates satisfied by event is L. As
introduced in Section 4.3, there are maximum 4 search
paths in order to get Entryltem, the search time com-
plexity to get Entryltem is O(logn). So the total search
time complexity is O(logn + L).

As introduced in Section 4.4, there are two stepsin in-

sertion operation, both steps have same time complexity

Table 1 Comparisons of Space and Time Complexities

Algorithm Space Search Insert/Delete

PB+-tree O(n) O(logn + L) | O(log n)

Grouped O(n) O(logn + L) | O(logn)

Filter [17]

Red-Black tree | O(n) O(n) O(logn)

based [4]

IBS-Tree [12] O(nlogn) | O(logn + L) | O(log?n)

Time Index [7] O(n?) O(logn + L) | MIN:O(log n)
MAX:0(n)

Interval B+tree [3] | O(n) O(n) O(logn)

O(logn), so the time complexity of insertion is O(logn).
For the same reason, the complexity of deletion is O(log n)
also.

Our algorithm is built based on B+tree, the leaf nodes
are extended to link three lists, so the space complexity
is O(n). In table 1, the comparisons of complexities are
listed.

Considering Complexities of time and space, we com-
pare with only Grouped Filter [4] for its best complexities.
As introduced in Section 3, Grouped Filter uses four data
structures for different operators and PB+tree has only
one data structures. Grouped Filter is a main memory
predicate index and PB+tree is designed for secondary
storage predicate index.

Besides differences in space and time complexities, the
data structure designed for spatio-temporal database is
used to find all intervals that intersect a input point,
which means they support predicates with format (Con-
stantstart < Attribute < Constanteada). In the case that
Constantstart or Constantena is infinite, overlap will rise
greatly for IBS-tree[12] and Time Index[3], search effi-
ciency will decline greatly for Interval B+tree. They don’t
support predicate with single operator directly.

By the comparisons in Table 1 and above analysises,
we can conclude that efficient event matching can be
reached by building secondary storage predicate index on

PB+tree.
6. Conclusion

In this paper, we introduced a secondary storage pred-
icate index based on B+tree and algorithms for event
matching. The index supports predicates with relational
operators(<, <=,=,! =,>=,>). The space complexity
is O(n).

and the time complexity of both insertion and deletion

The time complexity of search is O(logn + L)

is O(log n). Analytical comparison of our proposed algo-
rithms with existing work indicates that our secondary

storage predicate index is efficient for event matching.

(10]

(11]

(12]

(13]

(14]

(19]

References

Marcos K.Aguilera, Robert E.Strom, Daniel C. Stur-
man, Mark Astley, Tushar D.Chandra. Matching Events
in a Content-based Subscription System. Eighteenth
ACM Symposium on Principles of Distributed Comput-
ing(PODC), 1999

M.deBerg, M.van Kreveld, M.Overmars, O.Schwarzkopf.
”Computational Geometry-Algorithms and Applica-
tions”. ISBN 3-540-65620-0 Springer. 1998

Tolga Bozkaya, Meral Ozsoyoglu. Indexing transaction
time database. Information Sciences 112(1998)

Sirish Chandrasekaran, Michael J. Franklin. Streaming
Queries over Streaming Data. Proceedings of the 28th
VLDB Conference, Hong Kong, 2002

Jiangjun Chen, David J. DeWitt, Feng Tian, Yuan
Wang. NiagaraCQ: A Scalable Continuous Query Sys-
tem for Internet Databases. ACM SIGMOD 2000

Y.-J. Chiang and R.Tamassai, ”Dynamic Algorithms in
Computational Geometry”. Technial Report CS-91-24,
Dept. of Computer Science, Brown Univ., 1991

Ramez Elmasri, Gene T.J. Wuu, Yeong-Joon Kim. THE
TIME INDEX: AN ACCESS STRUCTURE FOR TEM-
PORAL DATA. VLDB 1990

P. Th. Eugster, P. Felber, R. Guerraoui and A.-M. Ker-
marrec. The Many Faces of Publish/Subscribe. Technical
Report 200104, Swiss Federal Institute of Technology
Francoise Fabret, Francois Llirbat, Joao Pereira, Den-
nis Shasha. Efficient matching for Content-based Pub-
lish/Subscribe Systems. Technical report, INRIA, 2000.
Francoise Fabret, H.Arno Jacobsen, Francois Llirbat,
Joao Pereira, Kenneth A.Ross, Dennis Shasha. Filter-
ing Algorithms and Implementation for Very Fast Pub-
lish/Subscribe Systems. ACM SIGMOD 2001

Antonin Guttman. R-Trees: A Dynamic Index Structure
for Spatial Searching. ACM SIGMOD 1984

Eric N. Hanson, Moez Chaaboun, Chang-Ho, Yu-Wang
Wang. A Predicate Matching Algorithm for Database
Rule Systems. ACM SIGMOD 1990

Eric N. Hanson, Theodore Hohnson. Selection Predicate
Indexing for Active Database Using Interval Skip List.
TR94-017. CIS department, Univeristy of Florida, 1994
Eric N. Hanson, Chris Carnes, Lan Huang, Mohan
Konyala, Lloyd Noronha. Scalable Trigger Processing.
ACM SIGMOD 1999

Annika Hinze, Sven Bittner. Efficient Distribution-Based
Event Filtering. International Workshop on Distributed
Event Based Systems. Austrai July 2002

H.Arno Jacobsen, Francoise Fabret. Publish and Sub-
scribe Systems. Tutorial. ICDE 2001

Samuel Madden, Mehul Shah, Joseph Hellerstein, Vi-
jayshankar Raman. Continuously Adaptive Continuous
Queries(CACA) over Streams. ACM SIGMOD 2002
Rajeev Motwani. Models and Issues in Data Stream Sys-
tems. Invited Talk. PODS 2002

Tak W.Yan, Hector Garcia-Molina. The SIFT Informa-
tion Dissemination System. In ACM T'ODS 2000

