
DEWS2007 M6-5

関係データベースに基づくXMLデータのためのOLAP

キットチャントラ† 天笠俊之†,†† 北川博之†,††

†筑波大学大学院システム情報工学研究科コンピュータサイエンス専攻
††筑波大学計算科学研究センター

〒 305–8573茨城県つくば市天王台 1–1–1

E-mail: †kchantola@kde.cs.tsukuba.ac.jp,††{amagasa,kitagawa}@cs.tsukuba.ac.jp

あらまし Extensible Markup Language (XML)は，ネットワークにおけるデータ表現・交換フォーマットになった．

XML はあらゆる分野で標準的に使われるようになってきているため，今後はこれまでの単純な問合せ処理に加えて，

新たな情報を発見するための複雑な分析処理が必要になることが予想される．そこで本研究では，XML の特徴を考慮

に入れながら, XML データの多次元の分析を実行することができるように，XML-OLAP の分析手法を提案する．利

用者は XPathを用いて XML データキューブを指定し，OLAP拡張を施した XQueryによって分析処理を行う．システ

ムの実装には関係データベースを利用し，与えられたデータキューブ定義や分析要求を SQLに変換することで処理を

行う．最後に実験による評価を行い，提案手法の妥当性を示す．

キーワード XML, OLAP, XPath, XQuery

An Approach to XML-OLAP Based on Relational Databases

Chantola KIT†, Toshiyuki AMAGASA†,††, and Hiroyuki KITAGAWA†,††

† Department of Computer Science, Graduate School of Systems and Information Engineering

†† Center for Computational Sciences

University of Tsukuba

1–1–1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan

E-mail: †kchantola@kde.cs.tsukuba.ac.jp,††{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract Extensible Markup Language (XML) has become an important format for data exchange and representation on the

web. In addition to conventional query processing, more complex analysis on XML data is considered to become important in

order to discover valuable information. In this research, we attempt to investigate an XML-OLAP, by which we can perform

multidimensional analysis on XML data taking XML’s features into account. Users are allowed to specify XML data-cube by

XPath, and perform analytical processing by XQuery with OLAP extensions. The system is implemented on top of relational

databases, and the given requests for data-cube specification and analysis are translated into SQL so that they can be processed

using the underlying system. We show the feasibility of the proposed scheme by experimental evaluations.

Key words XML, OLAP, XPath, XQuery

1. Introduction

Since its emergence in 1998, the Extensible Markup Language

(XML) [1] has become a de facto standard for data exchange and

representation on the web. Now, XML has been used in a wide

spectrum of application domains, such as web documents, business

documents, and log data. For this reason, in addition to such simple

query retrieval, more complex ways to make analysis of XML data

are considered to be more and more important in order to extract

useful information from massive XML data.

In our previous research [2], we proposed a model for OLAP anal-

ysis on XML data using relational databases. Specifically, for al-

lowing users to specify facts and dimensions about XML data, we

employ slightly extended XPath expressions. The system extracts

corresponding XML fragments from the underlying XML database

based on the fact and dimension specifications, and constructs mul-

tidimensional XML data-cube. The users then make analysis on the

data-cube by issuing multidimensional queries. One notable fea-

ture of the work is that we take account of structure-based concept

hierarchy, as well as value-based concept hierarchy, which is an im-

— 1 —

portant characteristic of XML data.

In this paper, we will discuss an approach to XML-OLAP system

using relational database systems based on our previous work. Our

contributions in this paper are as follows:

• We discuss roll-up operation for XML data-cube. It is an ex-

tension in SQL2003 for supporting OLAP operations for relational

data-cube. We employ the syntax, and adapt it for XML data-cube.

We then discuss its implementation using the functionality of rela-

tional database systems.

• We evaluate the performance of the proposed scheme by a

series of experiments. The experimental results show that the pro-

posed scheme can deal with 100MB XML data with reasonable pro-

cessing time.

The rest of this paper is organized as follows: in Section 2, we

introduce preliminaries which we describe about OLAP and XML.

Then, in Section 3, we discuss related works. In Section 4, we show

an overview of our proposed system and the definitions of fact and

dimension of XML data, XML hierarchies, and data cube on XML

data. We also discussed OLAP extensions to XQuery in this sec-

tion. In Section 5 we describe our implementation issue which we

will discuss relational XML storage, data cube construction, and

query processing with both structure- and value-based grouping,

and ROLLUP operation. In Section 6, we give experimental evalu-

ation. Finally, in Section 7, we conclude this paper.

2. Preliminaries

In this section, we briefly overview OLAP, XML and its query

languages, XPath and XQuery.

2. 1 Online Analytical Processing (OLAP)

Online Analytical Processing (OLAP) is a category of software

technology that enables analysts, managers, and executives to ob-

tain insight into data through fast, consistent, interactive access to a

wide variety of possible views of information. The information has

been transformed from raw data to reflect the real dimensionality of

the enterprise as understood by users.

When considering OLAP, star schema, cube, and aggregation op-

erations are the most important concepts. To represent the multidi-

mensional data model,star schema, that consists of single fact table

and some dimension tables, is used. Each dimension table contains

columns corresponding to attributes of the dimension.

An OLAP system models the input data as a logical multidimen-

sionalcube with multiple dimensions which provides the context

for analyzing measures of interest. To analyze the data with the cube

structure, various aggregation operations, namely, drilling, pivoting

(or rotating), and slicing-and-dicing, are used to change the number

of dimensions and the resolutions of dimensions of interest.

The cube, in Figure 1, shows a sales cube of three dimensions,

area, category, and price. Starting from the cube at the upper left,

we can create a new cube with coarser granularity on the area axis

by applying roll-up operation. We can go back to the finer granular-

ity by drill-down operation. By slicing on the price dimension, we

can get only the common price cube. Dice operation enables us to

change order of the dimensions.

all

A B C D E F

db web

cs

kansai

kanto
all

math

10 2050

6040 30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all

all

A B C D E F

db web

all

cs

kansai

kanto
all

math

10 2050

6040 30 common
1000-5000

3400

D E F

db web

cs

kansai

kanto
all

20

30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all
all

A

B

C

D

E

F

db

web

cs

kansai kanto

all

math

10

20

5060

40

30 common
1000-5000

34
00

Role up

Drill down

Dice

Slice

Pivot

tsukuba
osaka
kyoto

A B C D E F

db web

all

cs

kansai

kansto

math

10 2050
6040

30 cheap
0-1000

common
1000-5000

expensive
5000-10000

3400

allall

A B C D E F

db web

cs

kansai

kanto
all

math

10 2050

6040 30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all

all

A B C D E F

db web

cs

kansai

kanto
all

math

10 2050

6040 30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all

all

A B C D E F

db web

all

cs

kansai

kanto
all

math

10 2050

6040 30 common
1000-5000

3400

A B C D E F

db web

all

cs

kansai

kanto
all

math

10 2050

6040 30 common
1000-5000

3400

D E F

db web

cs

kansai

kanto
all

20

30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all

D E F

db web

cs

kansai

kanto
all

20

30

3400

cheap
0-1000

common
1000-5000

expensive
5000-10000

all
all

A

B

C

D

E

F

db

web

cs

kansai kanto

all

math

10

20

5060

40

30 common
1000-5000

34
00

A

B

C

D

E

F

db

web

cs

kansai kanto

all

math

10

20

5060

40

30 common
1000-5000

34
00

Role up

Drill down

Dice

Slice

Pivot

tsukuba
osaka
kyoto

A B C D E F

db web

all

cs

kansai

kansto

math

10 2050
6040

30 cheap
0-1000

common
1000-5000

expensive
5000-10000

3400

all
tsukuba
osaka
kyoto

A B C D E F

db web

all

cs

kansai

kansto

math

10 2050
6040

30 cheap
0-1000

common
1000-5000

expensive
5000-10000

3400

all

図 1 OLAP example

Fig. 1 OLAP example.

2. 2 XML, XPath, and XQuery

XML has become the language of choice for data representation

across a wide range of application. It has been designed to represent

both structured and semi-structured data. An XML data is basically

modeled as a labeled tree: elements and attributes are mapped into

nodes of graph; directed nesting relationships are mapped into edges

in the tree. The path of a noden in an XML tree refers to the path

from root of the tree ton. The length of a pathp is the number of

nodes inp. If the length of path of a nodea is smaller than that of

nodeb, then we say,a is higher thanb. Each elemento in XML

document can be considered as a sub-tree which is a tree witho as

the root and contains all descendants ofo.

XML data can be queried by XML query languages such asXPath

andXQuery. XPath [3] is a language for addressing portion of an

XML data. We can specify an XML sub-tree in term of a navi-

gational path over XML tree by conditions on the element’s label,

value, and relationship among nodes along the path.

XQuery [4] is a query language designed to query collection of

XML data. XQuery uses XPath as a sub-language to address spe-

cific parts of an XML document. It employs SQL-like FLWOR

(FOR, LET, WHERE, ORDER BY, RETURN) expression for per-

forming joins.

3. Related Works

Bordawakar et al. [5] investigated various issues related to XML

data analysis, and proposed a logical model for XML analysis based

on the abstract tree-structured XML representation. In particular,

they proposed a categorization of XML data analysis system: 1)

XML is used simply for external representation for OLAP results,

2) Relational data is extracted from XML data, and then processed

with existing OLAP systems, 3) XML is used for both data repre-

sentation and analysis. In order to support complex analytical op-

erations, they also proposed new syntactical extensions to XQuery,

such as “GROUP BY”, “ ROLLUP”, “TOPOLOGICAL ROLLUP”,

“CUBE”, and “TOPOLOGICAL CUBE”. In our research, we em-

ploy the syntax of “GROUP BY ROLLUP” and “GROUP BY

TOPOLOGICAL ROLLUP” to allow users to specify OLAP op-

eration in XQuery.

Jensen et al. [6] proposed a scheme for specifying OLAP cubes

— 2 —

on XML data. They integrated XML and relational data at the con-

ceptual level based on UML, which is easy to understand by sys-

tem designers and users. In their scheme, a UML model is built

from XML data and relational data, and the corresponding UML

snowflake diagram is then created from the UML model. In par-

ticular, they considered how to handle dimensions with hierarchies

and ensuring correct aggregation.

Pedersen et al. [7] proposed a federation of OLAP and XML,

which allows external XML data to be presented along with dimen-

sional data in OLAP query results. It enables the uses of external

XML data for selection and grouping. It is the same to the third

approach mentioned by Rajesh Bordawakar et al. [5]. They allow

XML data to be used as “virtual” dimensions, and present a data

model and multi-schema query language based on SQL and XPath.

4. An Overview of the Proposed XML-OLAP
System

4. 1 System Overview

The left side of Figure 2 shows an overview of our proposed

scheme. According to the content of XML data, a user at first gives

a fact path and some dimension paths in XPath expression to denote

his/her interest. Referring to the given fact and dimension paths,

the system produces an XML cube. After getting the cube, the user

can make analysis of the XML data-cube using XQuery with OLAP

extensions.

The following discusses how XML cube can be constructed in

our system.

4. 2 Formal Definitions

To construct an XML data-cube, we first need to specify fact and

dimensions. Let us look at the definitions of fact and dimensions.

4. 2. 1 Facts about an XML Data

A fact-table in a traditional OLAP system stores data items which

are to be analyzed. We attempt to define the facts in an XML data

after the traditional OLAP way. In order to identify the facts, we

use XPath as the query language.

［Definition 1］（Fact path） A fact path (pf) is an absolute XPath

expression that identifies data items of interest.

For example, when a user wants to get information of book

sales from sales XML data as in the upper left side of Figure 3,

the related data items can be obtained by the fact pathpf =

doc("sales.xml")//b .

4. 2. 2 Dimensions

Having fixed the fact data, we might additionally need some di-

mensions whose values are used to group the facts together for the

subsequent aggregation operations. In traditional OLAP systems,

dimensions are given as independent tables associated with the fact

table. In this work we try to define a dimension as an XPath query,

but we need to care about the relationship between the fact data and

dimensions. In order to ensure this, a dimension path is in either

of the two cases: relative path from the fact path and absolute path

with referential constraints.

［Definition 2］（Dimension path） A dimension path is an XPath

expression(pd) in either of the two forms:

（ 1） pd is a relative path expression originated from the fact

pathpf , or

（ 2） pd is an absolute path expression contains at least one con-

dition with the fact pathpf .

Figure 3 shows an example of fact and dimension paths. The cir-

cles on the top left document represent the facts corresponding to

pf . When we want to use the book title as a dimension for the

subsequent analysis, a dimension path can be given aspd1 =t ,

which is a relative path frompf . If we are interested in group-

ing the books according to price ranges which is represented in an-

other XML data (the upper right document of Figure 3), we need

to specify absolute path expression with referential constraints like

pd2 =doc("bookinfo.xml")//b[t = pf /t]/p . As can

be seen from the example, for a given book, we can obtain corre-

sponding price in another XML data by using title as the clue.

4. 2. 3 Concept Hierarchy

The concept hierarchy is a notable feature of traditional OLAP

systems by which we can carry out flexible grouping operations over

the data items stored in the fact table. As with the traditional OLAP

systems, we assume that value-based concept hierarchies are given

beforehand. We do not go into the detail of how to represent such a

hierarchy, because it is beyond the scope of this paper. When deal-

ing with XML data in the same context, we need a special consid-

eration on the semistructured nature. Specifically, we have to take

into account structure-based concept hierarchy which is naturally

represented as the hierarchical structure of XML data.

Taking Figure 3 for example, all books (b) are categorized by

the XML hierarchies according to the area or book category. The

structure-based concept hierarchy allows us to aggregate facts using

such XML data structure. We will discuss the detail later.

4. 2. 4 Data Cube on XML Data

We are now ready to define data cube on XML data using the

concepts of the fact and dimension paths. Before going into the def-

inition, we introduce some notations as helpers. For a given XPath

expressionp, [[p]] denotes an evaluation ofp, and the result would

be XML nodes, string-values, or a boolean. Let[[p]] denotes an

evaluation ofp wherep represents an XPath expression.

［Definition 3］（XML data-cube） An XML-cube is defined as

(pf , D) wherepf is a fact path andD = {pd1, pd2, . . . , pdn} is

a set of dimension paths. A factf in the cube is ann + 1-tuple

(f, d1, . . . , dn) wheref ∈ [[pf]] and eachdi is obtained by eval-

uatingpdi: [[pdi]]f if pdi is in a relative form or[[p′
di]] wherep′

di

can be obtained by replacing each occurrence ofpf/pr in pdi with

[[pr]]f . n is the rank of the XML-cube.

Let us consider an XML data-cube as an example (Figure 3). It is

defined as(pf , {pd}), wherepf =doc("sales.xml")//b and

pd =doc("bookinfo.xml")//b[t = pf /t]/p . A tuple can

be extracted as follows. Firstly, fact data can be extracted by eval-

uating fact path like[[pf]] = {b1, b2, . . . , b6}. For each fact data

bi, we can identify corresponding dimension data in another XML

data as specified bypd. When evaluatingpd, we need to rewrite the

path according to the fact data. For example, for the factb1, pf /t ,

which is a part ofpd, is rewritten as[[pf /t]]b1 = {"A" }, that turns

— 3 —

nullc1.1.2440

…0

nullarea1.147101

Nullsales14691

nullb1.1.1.1.150131

nullbookinfo1010

nulltsukuba1.1.1.149121

mathCDATA1.1.1.1330

nullkanto1.1.148111

null@name1.1.1230

nullc1.1120

valuetnamennumnidpiddid

nullc1.1.2440

…0

nullarea1.147101

Nullsales14691

nullb1.1.1.1.150131

nullbookinfo1010

nulltsukuba1.1.1.149121

mathCDATA1.1.1.1330

nullkanto1.1.148111

null@name1.1.1230

nullc1.1120

valuetnamennumnidpiddid

6/bookinfo/c/c/@name4

6/bookinfo/c/c/b5

12/bookinfo/c/c/b/p7

1/sales/area/kanto/tsukuba1
1

12/bookinfo/c/c/b/t6

1/bookinfo1

3/bookinfo/c/c3

1/sales8

4/bookinfo/c/@name3

2/bookinfo/c2

poccuPexpp

6/bookinfo/c/c/@name4

6/bookinfo/c/c/b5

12/bookinfo/c/c/b/p7

1/sales/area/kanto/tsukuba1
1

12/bookinfo/c/c/b/t6

1/bookinfo1

3/bookinfo/c/c3

1/sales8

4/bookinfo/c/@name3

2/bookinfo/c2

poccuPexpp

SQLXPath

ImplementationSystem

�

�

� �

� � � �

�

�
�	�
�

�
�	�
�

���� � � � �������

����� �

� �

� � � � �

name
“linalgebra”

n
ame
“
web”

�

� � � � � � � �

name
“math”

name
“cs”

c

c

�

c

c

�

�

� �

�

� �

�

� �

�

� �

�

� �

na
me
“db”

c

�� � � � ! " # � � $ � $ � � �%&

'� � � � ! " # � � $ � $ � � �%&

(� � � � ! " # � � $ � $ � � �%&

)� � � � ! " # � � $ � $ � � �%&

*� � � � ! " # � � $ � $ � � �%&

+� � � � ! " # � � $ � $ � � �%&

, -.% - / %0 ! 0

�� � � � ! " # � � $ � $ � � �%&

'� � � � ! " # � � $ � $ � � �%&

(� � � � ! " # � � $ � $ � � �%&

)� � � � ! " # � � $ � $ � � �%&

*� � � � ! " # � � $ � $ � � �%&

+� � � � ! " # � � $ � $ � � �%&

, -.% - / %0 ! 0

Fact /Dimension Paths

SQL

Query Translation

Path
Approach

Query Translation

Node table Path table

�� � � � ! " # � � $ � $� � � %&

'� � � � ! " # � � $ � $� � � %&

(� � � � ! " # � � $ � $� � � %&

)� � � � ! " # � � $ � $� � � %&

*� � � � ! " # � � $ � $� � � %&

+� � � � ! " # � � $ � $� � � %&

, - .% - / %0 !0

�� � � � ! " # � � $ � $� � � %&

'� � � � ! " # � � $ � $� � � %&

(� � � � ! " # � � $ � $� � � %&

)� � � � ! " # � � $ � $� � � %&

*� � � � ! " # � � $ � $� � � %&

+� � � � ! " # � � $ � $� � � %&

, - .% - / %0 !0

&

&

&

&

&

&

0 ! 0

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

% - / %

�

'

(

)

*

+

, - .

�

'

(

)

*

+

, -.

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

% - / %

&

&

&

&

&

&

0!0

&

&

&

&

&

&

0 ! 0

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

% - / %

�

'

(

)

*

+

, - .

�

'

(

)

*

+

, -.

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

% - / %

&

&

&

&

&

&

0!0

Fact
table

Dimension
table

XML
Data-cube

XQuery
w/OLAP
Extension

1 2

total

1 3 1 4 � � 5 1 2

total

1 3 1 4 � � 5

xmlcube

6�7

name
“math”

c

1000

name
“linear algebra”

p1b1

D

6�7

8 9 9 : ; < = 9
name
“cs”

2000

name
“db”

p4b2

>

? @ A ?
: ? < B ? ;

B ? C A B

: D 9 6 9

6�7
8

6 E > C A

8 9 9 : ; < = 9
name
“cs”

c

c

8
name
“web”

p5b6
>

B ? C A B
? @ A ?
: ? < 6 9
6 B E : E 8 ?

8 9 9 : ; < = 9

6 E > C A 6 E > C A

B ? C A B
? @ A ?
: ? < 6 9
6 B E : E 8 ?

c

b

p

8 8

c

c

8

XQuery w/OLAP
Extension

������������

������������

������������

������������

������������

������������

������������� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � 	� � � � � 	� � � � � 	� � � � � 	

������������

������������

������������

������������

������������

������������

������������� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � 	� � � � � 	� � � � � 	� � � � � 	

c

c

図 2 System overview.

Fig. 2 System overview.

out to bedoc("bookinfo.xml")//b[t = "A"]/p . In this

way, we can extract all tuples from the data cube, that are set of

2-tuple:{(b1, p1), (b2, p4), (b3, p3), (b4, p3), (b5, p2), (b6, p5)}.

In contrast to the existing OLAP, and XML-cube may contain

much information more than the dimensionality (what we call

“rank”). That is, each XML fragment may contain more informa-

tion than a numerical value, such as elements, texts, attributes, and

hierarchical information. In order to form a cube-like structure, we

need to specify some of them as dimensions of the cube structure.

For instance, each tuple of the rank 1 XML data-cube in Fig-

ure 3 (lower side) contains two XML fragments of books coming

from “sales.xml” and prices from “bookinfo.xml”. According to

the fragments, this XML data-cube potentially has five attribute val-

ues: title, quantity, area, price, and category. Assume that we are

interested in getting the information related to the book sales area

and price, we can create a cube by specifying the area and price as

the dimension. Figure 4 shows the cube.

4. 3 OLAP Extensions to XQuery

Once the data cube is constructed, we can make analysis using

the dimensions, and related information such as XML hierarchies as

clues to aggregate measures of the facts. In our system, we attempt

to use XQuery as the user query language. However, the current

version of XQuery does not support aggregation function. So we

employ the syntax of OLAP extension for XQuery [5], GROUP BY

ROLLUP and GROUP BY TOPOLOGICAL ROLLUP. The same

as the roll-up operation in ordinary OLAP systems, ROLLUP en-

ables a SELECT statement to calculate multiple levels of subtotals

across a specified group of dimensions. It also calculates a grand

total. ROLLUP is an extension to the GROUP BY clause so its syn-

tax is extremely easy to use. The latter, TOPOLOGICAL ROLLUP,

is similar to ROLLUP but for computing structure-based grouping

over XML data.

For example, related to the example of sales XML data-cube, a

user may be interested in viewing the total price of the sold books in

each area from the lowest to the highest level by giving an XQuery

as bellow:

FOR $s in xmlcube/tuple/pf
$b in xmlcube/tuple/pd

WHERE $s//b/t = $b/t
GROUP BY TOPOLOGICAL ROLLUP($s//b)
LET $p := SUM($s//b/q * $b/p)
LET $a := $s/../b
RETURN
<book>

<area> $a </area>
<totalprice> $p </totalprice>

<\book>

To perform this query with XML data-cube, the system uses ex-

isting query translation to convert such XQuery to SQL which the

detail will be discussed later.

5. Implementation Using Relational Database
Systems

This section discusses an implementation of the proposed model

and grouping operations (Figure 2, right). We try to make the best

use of relational databases as the underlying data storage. The rea-

sons are: 1) there are many commercial and open source products,

2) enormous amount of information resources are stored in rela-

— 4 —

xmlcube

area
kanto

s al es

ts u ku ba

A

t q
10

b

tu pl e
book i n f

o name
“math”

c
c

b

1000

name
“linear algebra”

p1b1

area
kanto

s al es

ts u ku ba

D

t q
20

b

tu pl e
book i n f o name

“cs”
c
c

b

2000

name
“db”

p4b2 p

area
kans a

i

s al es

ky oto

F

t q
30

b

tu pl e
book i n f o name

“cs”
c
c

b

3400

name
“web”

p5b6 pp

A

k y o tots u k u ba

area

o s a k a

k a n s aik a n to

t q t q t q t q t q
10 D 20 C 10 C 60 B 40 F 30

t q

sales

b b b b b bb1 b2 b3 b4 b5 b6

Fact
sales. x m l

b

3400

bookinfo
name
“math” name

“cs”c
c

t

c
c

p
F

b

6000

t p
b

2000

t p
D

b

8000

t p
b

3000

t p

b

1000

t p
A

name
“db” c name

“web”

B C E

p1 p2 p3 p4 p5

Dimension

name
“linear algebra”

b o o k i n f o . x m l

xmlcube

area
kanto

s al es

ts u ku ba

A

t q
10

b

tu pl e
book i n f

o name
“math”

c
c

b

1000

name
“linear algebra”

p1b1

area
kanto

s al es

ts u ku ba

D

t q
20

b

tu pl e
book i n f o name

“cs”
c
c

b

2000

name
“db”

p4b2 p

area
kans a

i

s al es

ky oto

F

t q
30

b

tu pl e
book i n f o name

“cs”
c
c

b

3400

name
“web”

p5b6 pp

xmlcube

area
kanto

s al es

ts u ku ba

A

t q
10

b

tu pl e
book i n f

o name
“math”

c
c

b

1000

name
“linear algebra”

p1b1

area
kanto

s al es

ts u ku ba

D

t q
20

b

tu pl e
book i n f o name

“cs”
c
c

b

2000

name
“db”

p4b2 p

area
kans a

i

s al es

ky oto

F

t q
30

b

tu pl e
book i n f o name

“cs”
c
c

b

3400

name
“web”

p5b6 pp

A

k y o tots u k u ba

area

o s a k a

k a n s aik a n to

t q t q t q t q t q
10 D 20 C 10 C 60 B 40 F 30

t q

sales

b b b b b bb1 b2 b3 b4 b5 b6

Fact
sales. x m l

A

k y o tots u k u ba

area

o s a k a

k a n s aik a n to

t q t q t q t q t q
10 D 20 C 10 C 60 B 40 F 30

t q

sales

b b b b b bb1 b2 b3 b4 b5 b6

Fact
sales. x m l

b

3400

bookinfo
name
“math” name

“cs”c
c

t

c
c

p
F

b

6000

t p
b

2000

t p
D

b

8000

t p
b

3000

t p

b

1000

t p
A

name
“db” c name

“web”

B C E

p1 p2 p3 p4 p5

Dimension

name
“linear algebra”

b o o k i n f o . x m l

b

3400

bookinfo
name
“math” name

“cs”c
c

t

c
c

p
F

b

6000

t p
b

2000

t p
D

b

8000

t p
b

3000

t p

b

1000

t p
A

name
“db” c name

“web”

B C E

p1 p2 p3 p4 p5

Dimension

name
“linear algebra”

b o o k i n f o . x m l

図 3 Facts, dimensions, and Sales XML data-cube.

Fig. 3 Facts, dimensions, and Sales XML data-cube.

area

tsukuba

kyoto

kanto

kansai

osaka

cheap
0-1000

common
1000-5000

expensive
5000-10000

price rank

1000

�

A

�

���

10
2000

�

D

�

���

10

8000

�

C

�

���

10

8000

�

C

�

���

10
3000

�

B

�

���

10

3400

�

F

�

���

10

n1m1 m2 n4 m3 n3

n3m4n2m5

m6 n5

area

tsukuba

kyoto

kanto

kansai

osaka

cheap
0-1000

common
1000-5000

expensive
5000-10000

price rank

1000

�

A

�

���

10
2000

�

D

�

���

10

8000

�

C

�

���

10

8000

�

C

�

���

10
3000

�

B

�

���

10

3400

�

F

�

���

10

n1m1 m2 n4 m3 n3

n3m4n2m5

m6 n5

図 4 2 dimensinal XML-cube.

Fig. 4 2 dimensional XML-cube .

tional systems, and 3) we can leverage established relational XML

storage techniques. In addition, we can utilize grouping, and OLAP

extension functionalities, which are supported in most relational

database systems, to implement value- and structure-based group-

ing of XML data.

5. 1 Relational XML Storage

We employ the path-approach [8] for mapping XML data to rela-

tional tables, because we can manage any well-formed XML doc-

uments with fixed relational schema and realize practical subset of

XPath solely by the use of SQL functionalities. Due to the lim-

itation of pages, we just show the brief overview. In the path-

approach, an XML node is basically mapped to a relational tuple

of two tables, path table containing all absolute path expression of

all XML nodes, and node table containing all XML node informa-

tion. Table 1 (left) shows the path table extracted from “sales.xml”

and “bookinfo.xml”. The attributespid, pexp, andpoccur in the

path table denote path id to join path table with node table, the ab-

solute path of XML node, and occurrences of the path expression,

respectively. In the node table (Table 1, right), there aredid, pid,

nid, nnum, tname, andvalue. Attributedid denotes the id of the

表 1 Path table and node table.

Table 1 Path table and node table.

………………
��� � � � ��� �� �� �� �� �� �	
�	�

�� ��� �� �� �� �� �	��	�

�� � � � ��� �� �� �� �� �� �	��
�

�� ��� �� �� �� �� �	��
�

�� ��� �� �� �� �	����

�� �� � � � ���� �� �� ��
����

�� � ������ �� �
����

�� ������ �
����

�� � ����
���

………………
����� � � � ��� �� �� �� �� �����

�� ��� �� �� �� �����

�� � � � ��� �� �� �� �� ����

�� ��� �� �� �� ����

�� ��� �� �� ����

������� ����! " �� ��� �� �� �� ��	�

�� # ��$ ��� �� �� �		�

�� %�� �� �

�

$ ��&! " �� ��� �� �� ����

�� # ��$ ��� �� ����

�� %�� ����

�� �� � � ��' �����

��������������������� � �� �� � �� �� � �� �� � �� �� � ��� � ��� � ��� � ��� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	

 	

 	

 	

 	

………………
��� � � � ��� �� �� �� �� �� �	
�	�

�� ��� �� �� �� �� �	��	�

�� � � � ��� �� �� �� �� �� �	��
�

�� ��� �� �� �� �� �	��
�

�� ��� �� �� �� �	����

�� �� � � � ���� �� �� ��
����

�� � ������ �� �
����

�� ������ �
����

�� � ����
���

………………
����� � � � ��� �� �� �� �� �����

�� ��� �� �� �� �����

�� � � � ��� �� �� �� �� ����

�� ��� �� �� �� ����

�� ��� �� �� ����

������� ����! " �� ��� �� �� �� ��	�

�� # ��$ ��� �� �� �		�

�� %�� �� �

�

$ ��&! " �� ��� �� �� ����

�� # ��$ ��� �� ����

�� %�� ����

�� �� � � ��' �����

��������������������� � �� �� � �� �� � �� �� � �� �� � ��� � ��� � ��� � ��� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	

 	

 	

 	

 	

�(� ��� (����(� ��� ��(�) � ����

(� ��� (����(� ��� ��(� � �� �(�(���

(� ��� (����(� ��� ��(� � �� �(�(���

�(� ��� (����(� ��� ��(� � �� ���

�(� ��� (����(� ���� (�� � � � ��(�(��	

�(� ��� (����(� ��� ����

�(� ��� (����(� ��� ��(� � �� �(���

………
�(� ��� (����(� ��� ��(�) �� (���

�(� ��� (����(� ���� (�� � � � ��(�(��

�(� ��� (����(� ���� (�� � � � ��(���

�(� ��� (����(� ���� (�� � � � ����

�(� ��� (����(� ������

�(� ��� (������

�(� ����

��(�� � � ��' � (%(%(�(��

��(�� � � ��' � (%(%(�(��

�(�� � � ��' � (%(%(��

�(�� � � ��' � (%(%(# ��$ �	

�(�� � � ��' � (%(%

(�� � � ��' � (%(# ��$ ��

�(�� � � ��' � (%�

�(�� � � ��' ��

� � ��� � ��� � ��� � ��� �� �� �� �� �� �� �� �� 	
� 	
� 	
� 	

�(� ��� (����(� ��� ��(�) � ����

(� ��� (����(� ��� ��(� � �� �(�(���

(� ��� (����(� ��� ��(� � �� �(�(���

�(� ��� (����(� ��� ��(� � �� ���

�(� ��� (����(� ���� (�� � � � ��(�(��	

�(� ��� (����(� ��� ����

�(� ��� (����(� ��� ��(� � �� �(���

………
�(� ��� (����(� ��� ��(�) �� (���

�(� ��� (����(� ���� (�� � � � ��(�(��

�(� ��� (����(� ���� (�� � � � ��(���

�(� ��� (����(� ���� (�� � � � ����

�(� ��� (����(� ������

�(� ��� (������

�(� ����

��(�� � � ��' � (%(%(�(��

��(�� � � ��' � (%(%(�(��

�(�� � � ��' � (%(%(��

�(�� � � ��' � (%(%(# ��$ �	

�(�� � � ��' � (%(%

(�� � � ��' � (%(# ��$ ��

�(�� � � ��' � (%�

�(�� � � ��' ��

� � ��� � ��� � ��� � ��� �� �� �� �� �� �� �� �� 	
� 	
� 	
� 	

XML document,pid is the path id referring to the path expression

in the path table,nid, andnnum are pre-order and dewey id used

to identify the node,tname denote the tag name, which is either

of element name, “#TEXT”, “@attribute”, or “CDATA” depending

on the type of the node. The last column is the value of the text or

attribute node.

5. 2 Extracting Fact and Dimensions

The first step is to extract fact and dimensions. As discussed in

Section 4. 2. 1 and 4. 2. 2, a fact and its dimensions are XML sub-

trees specified by XPath queries. Hence, we can represent the fact

(or a dimension) as a part of node table. This can be achieved by

evaluating the fact (dimension) path, and storing the result as a new

table. Those tables can be defined as either views or materialized

views.

For example, from the relational tables (path and node tables),

Appendix 1. shows the SQL query used to produce fact of the given

example, and Appendix 2. contains the SQL query to create book

price referring to the example dimension path.

5. 3 Data Cube Construction

In the next we create an XML data-cube. For this purpose, we

need to establish the relationships between the fact and the dimen-

sion as described in Section 4. 2. 4. We join the base relations by

giving the referential constraints as the join key.

Appendix 3. consists of the SQL query which creates the XML

data-cube table as shown in Table 2, by joining the fact and dimen-

sion tables using jkey as the relationship. Therefore the XML data-

cube table contains all attributes from the fact and dimension and

each record consists of data from the fact and dimension which have

the same book title.

5. 4 Query Processing

As discussed in Section 4. 3, we use XQuery with OLAP exten-

sions as the user query language. In order to process a query, we

need to translate the query into SQL, because we make use of re-

lational database systems as the query processing engine. In fact,

there have been several works on XQuery to SQL query transla-

tion [9], and we can borrow those ideas. So, in this paper, we focus

— 5 —

表 2 XML data-cube example.

Table 2 XML data-cube example.

�� ����������
	��� � �� � � �� �� ������������� � � � � ��� ��� ��� ����������� ��� � � � �� � �� ���� ��� ��� ���� � � ��� ����� ��� ��� !�� " �������
#� ����������
	��� � � � �� � � �� �� $��������� � � � � ��� ��� ��� �����#����� ��� � � � �� � � � ��� ��� ��� ���� � � ��� ����� ��� ����� ��� � ���� ��
%� ����������
	��� � � � �� � � �� �&���������� � � � � ��� ��� ��� �����%����� ��� � � � �� � � �$ ���� ��� ��� ���� � � ��� ����� ��� ����� ��� � ���� ��
%� ����������
	��� � � � �� � � �� �&���������� � � � � ��� ��� ��� �����%����� ��� � � � � � � � �$ ���� ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� ��
' ����������
	��� � �� �� �� �� �� ��������� � � � � ��� ��� ��� �����'����� ��� � � � � � � � ������ ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� ��
(� ����������
	��� � � �� �� �� ������������� � � � � ��� ��� ��� �����(����� ��� � � � � � � � �� ���� ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� �� ����������������� � � � �� � � � �� � � � �� � � � �	
 � � �	
 � � �	
 � � �	
 � � �

 � �

 � �

 � �

 � �
 �
 �
 �
 � � �� �� �� �� �� �� �� �� � � � � � � � � � � � ����������������� � � � �� � � � �� � � � �� � � � �	
 � � �	
 � � �	
 � � �	
 � � �

 � �

 � �

 � �

 � �
 �
 �
 �
 � � �� �� �� �� �� �� �� �� � � � � � � � � � � �

�� ����������
	��� � �� � � �� �� ������������� � � � � ��� ��� ��� ����������� ��� � � � �� � �� ���� ��� ��� ���� � � ��� ����� ��� ��� !�� " �������
#� ����������
	��� � � � �� � � �� �� $��������� � � � � ��� ��� ��� �����#����� ��� � � � �� � � � ��� ��� ��� ���� � � ��� ����� ��� ����� ��� � ���� ��
%� ����������
	��� � � � �� � � �� �&���������� � � � � ��� ��� ��� �����%����� ��� � � � �� � � �$ ���� ��� ��� ���� � � ��� ����� ��� ����� ��� � ���� ��
%� ����������
	��� � � � �� � � �� �&���������� � � � � ��� ��� ��� �����%����� ��� � � � � � � � �$ ���� ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� ��
' ����������
	��� � �� �� �� �� �� ��������� � � � � ��� ��� ��� �����'����� ��� � � � � � � � ������ ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� ��
(� ����������
	��� � � �� �� �� ������������� � � � � ��� ��� ��� �����(����� ��� � � � � � � � �� ���� ��� ��� ���� � � ��� ��� " � � " � ��� ��� � ���� �� ����������������� � � � �� � � � �� � � � �� � � � �	
 � � �	
 � � �	
 � � �	
 � � �

 � �

 � �

 � �

 � �
 �
 �
 �
 � � �� �� �� �� �� �� �� �� � � � � � � � � � � � ����������������� � � � �� � � � �� � � � �� � � � �	
 � � �	
 � � �	
 � � �	
 � � �

 � �

 � �

 � �

 � �
 �
 �
 �
 � � �� �� �� �� �� �� �� �� � � � � � � � � � � �

on how to implement OLAP operations using SQL. Specifically, we

discuss how to realize structure-based grouping and roll-up opera-

tions.

5. 4. 1 Structure-based Grouping

For value-based concept hierarchy, the task is easy, because we

can assume that the concept hierarchy is given as an extra relational

table, so we do not go into the detail. Here, we discuss how to real-

ize grouping operation based on structure-based concept hierarchy.

Our basic strategy is to utilize path expressions.

The main idea is that we can just use path expressions as the clue

to perform grouping. Specifically, for a given data item, we need to

compute the prefix of each data, and then perform grouping on the

prefixes. The level of grouping can be controlled by the length of

the path prefixes.

Now, we discuss how to perform grouping operations using path

expressions. Let us introduce some notations. Given an XML

node n, let pexp(n) denoten’s absolute path expression, and

let prefix(exp, i) denote path expressionexp’s i-th prefix, e.g.,

prefix(“/a/b/c ”, 1) = “/a ”, andprefix(“/a/b/c ”, 2) =

“/a/b .” Then, the grouping can be performed in the following

way:

（ 1） Let the depth, which is the distance from the

root, of the dimension bed, e.g., the depth of a path

“/sales/area/kanto/tsukuba/b” isd = 5.

（ 2） Find the common prefix of all path expressions

and let the depth bei, e.g., the three path expressions,

“/sales/area/kanto/tsukuba/b”, “/sales/area/kansai/osaka/b”, and

“/sales/area/kansai/kyoto/b” have the same prefix path “/sales/area”.

As a consequence, we geti = 2.

（ 3） The level-j (i <= j <= d) grouping can be computed

by calculatingprefix(pexp(n), j) for each dimension valuen,

e.g., Referring to the previous three path expressions, letj be 3.

The prefix(pexp(n), 3) computes two level-3 groupings of the

paths which have the same 3-depth prefixes, /sales/area/kanto and

/sales/area/kansai.

In fact, the proposed grouping operation can be implemented in

many ways, but an important remark is that it can be realized solely

by the functionality of SQL. One possible way is to leverage the

string match functionality provided by the database system. More

precisely, we can make use of regular expressions to extract sub-

strings, and use them with theGROUP BYclause. Assume that

we would like to use the first two tags to group the facts, e.g., use

/sales/area out of /sales/area/kanto/tsukuba/b ,

we can achieve this by:

SELECT ...
FROM ...
WHERE ...GROUP BY regexp_replace(dim.pexp,

’ˆ(/[ˆ/]+/[ˆ/]+)/.+’, ’\\1’)

Another possibility is to introduce dedicated indexes based on

Dewey encodings or prime numbers. They might be good for speed-

ing up the grouping operations compared to the above approach.

The comparison might be an interesting topic to research.

5. 5 ROLLUP Operations

One possible way to implement roll-up operations (GROUP BY

ROLLUP and TOPOLOGICAL ROLLUP) in the extended XQuery

is to directly translate them into the counterpart in SQL2003, in

which OLAP operations are supported. However, in many database

systems, SQL2003 is not supported. For this reason, we try to real-

ize the roll-up operations using the functionality of SQL-92, which

is supported in most systems. Here we show how roll-up opera-

tions are applied to XML data-cube. As mentioned in Section 4. 3,

ROLLUP and TOPOLOGICAL ROLLUP create subtotals that roll

up from the most detailed level to a grand total, we use UNION

ALL, which enable us to compute set union over different grouping

levels, to implement the operations. Since the space is limited and

GROUP BY TOPOLOGICAL ROLLUP is similar to GROUP BY

ROLLUP, let us look at structure-based GROUP BY TOPOLOGI-

CAL ROLLUP example to implement the example in Section 4. 3.

The example rolls up the grouping of the area hierarchy in sales

XML data, /sales/area//b , which has 3 levels. The query can

be expressed as:

SELECT
FROM ...
WHERE ...GROUP BY regexp_replace(dim.pexp,

’ˆ(/[ˆ/]+/[ˆ/]+[ˆ/]+[ˆ/]+)/.+’, ’\\1’)
UNION ALL
SELECT
FROM ...
WHERE ...GROUP BY regexp_replace(dim.pexp,

’ˆ(/[ˆ/]+/[ˆ/]+[ˆ/]+)/.+’, ’\\1’)
UNION ALL
SELECT
FROM ...
WHERE ...GROUP BY regexp_replace(dim.pexp,

’ˆ(/[ˆ/]+/[ˆ/]+)/.+’, ’\\1’)

6. Experimental Evaluation

6. 1 Experimental Setup

All experiments were performed in Sun Microsystems Sun Fire

X4200 server whose CPU is a 2-way Dual Core AMD Opteron(tm)

processor (2.4GHz). This machine has 16GB memory and runs Sun

— 6 —

regions

site

samerica

Root

Element

Text

asia australia europe namericaafrica

item

payment quantity

item

payment quantity

item

payment quantity

regions

site

samerica

Root

Element

Text

asia australia europe namericaafrica

item

payment quantity

item

payment quantity

item

payment quantity

図 5 XMark data.

Fig. 5 XMark data.

OS 5.10. We used Java version 1.5.009 to parse XML data to rela-

tional tables, and PostgreSQL 8.1.4 to perform query processing.

For the experimental data, we used XMark data which is a com-

prehensive distributed system benchmarking and optimization suite.

Figure 5 depicts the structure of the XMark data. We chose “re-

gions” element for our experiment. Each “region” node contains

child nodes representing world continents, like Africa, Asia, Aus-

tralia, Europe, North America, and South America and some other

child nodes. Each Continent node contains several “item” elements,

and others. Each “item” node contains “quantity”, “payment”, and

some other child nodes. We tested the following sizes of XML data:

10MB, 100MB, 200MB, 300MB, 400MB, and 500MB.

6. 2 Benchmark Queries

For the benchmark query, we give a fact path,pf =

doc("xmark.xml")//item , and two dimension paths,pd1 =

quantity andpd2 = payment .

We ran three queries to show the performance of roll-up functions

of value-based, structure-based, and the combination.

a) Value-based Grouping (GROUP BY ROLLUP)

The value-based grouping will be done to group XML data based

on the text node values. For example, we attempt to calculate all the

subtotals of item quantity according to the payment method which

we can obtain from the payment text values.

b) Structure-based Grouping (GROUP BY TOPOLOGICAL

ROLLUP)

This grouping is based on the hierarchical structure of XML data,

e.g., we calculate all the subtotals of the item quantity according to

the XML hierarchical structure (/site/regions/.../item) representing

regional containment relationship of items.

c) The Combination of Structure- and Value-based Grouping

Additionally, we can make grouping based on both value and

structure of XML data. The result of the combining previous value-

and structure-based example can be seen in Table 3.

6. 3 Experimental Results

Table 4 and Figure 6 show the elapse times for data-cube con-

struction. At first, “item”, “quantity”, and “payment” are created.

After extracting those tables, the data-cube “payqty” is constructed.

Table 5 and Figure 7 represent query processing time of roll-up

operations. They are value-based (payment), structure-based (re-

表 3 Structure- and value-based GROUP BY ROLLUP.

Table 3 Structure- and value-based GROUP BY ROLLUP.

��� ������ � � � ��	 �
�� ����� …………

�� ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� ����� …………

�� ����� ����	 ����	 ������� ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� �����
������ ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� �����
������ � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� ����� …………

�� ����� ����	 ����	 ������	 � ��� �� ��!������" ���!	 ����� � � ��	 ��������� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
�� ����� ����	 ����	 ������� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
��!	 ����� � � ��	 ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
#����� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� ����� ��������������������������������� ��	
 ��� ��	
 ��� ��	
 ��� ��	
 ��� � ����
 ��� � ����
 ��� � ����
 ��� � ����
 ��
 � �� �
 � �� �
 � �� �
 � �� �

��� ������ � � � ��	 �
�� ����� …………

�� ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� ����� …………

�� ����� ����	 ����	 ������� ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� �����
������ ���� � � � ��	 �
 � ����� ����� � ���� � � � ��	 �
�� �����
������ � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� ����� …………

�� ����� ����	 ����	 ������	 � ��� �� ��!������" ���!	 ����� � � ��	 ��������� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
�� ����� ����	 ����	 ������� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
��!	 ����� � � ��	 ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� �����
#����� ���� � � � ��	 �
 � ����� ��� � 	 � � ���� � � � ��	 �
�� ����� ��������������������������������� ��	
 ��� ��	
 ��� ��	
 ��� ��	
 ��� � ����
 ��� � ����
 ��� � ����
 ��� � ����
 ��
 � �� �
 � �� �
 � �� �
 � �� �

�����

������

�������

�� �������

��� �������

���� �������

�� ���� �������

��� ���� �������

���� ���� �������

��� � ���� � � ��� � � ��� � 	 ��� �
 ��� �

� � � � � � � �

�
��
�
��
�
�
�

� �

図 6 Table construction time.

Fig. 6 Table construction time.

������

�������

�� �������

��� �������

��� � ���� � � ��� � � ��� � 	 ��� �
 ��� �

� � � � � � � �

�
��
�
��
�
�
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

図 7 Query processing time.

Fig. 7 Query processing time.

gion), and their combination (regionpay). The results show that the

processing time for data-cube construction is quite time consuming

even for 100MB data. However, the important remark here is that

once the data-cube is constructed, analytical query processing can

be processed in reasonable time. In real systems, in many cases,

data-cube construction is performed once in the midnight, and ana-

lytical processing are applied repeatedly in business hours. From the

observation, we think that the performance of the proposed scheme

is acceptable.

7. Conclusions

In this paper, we proposed a system for XML-OLAP which is

constructed on top of relational databases. Our system supports both

value- and structure-based hierarchy which enable users to make

analysis of XML data taking account of features of XML data. We

first introduced the concepts of fact path, dimension path, value- and

— 7 —

表 4 Elapse time for table construction (ms).

Table 4 Elapse time for table construction (ms).

table 10MB 100MB 200MB 300MB 400MB 500MB

item 23.914 405.430 796.759 1,218.629 1,578.560 1,813.991

quantity 170.968 2,319.777 4,741.477 7,077.531 9,478.404 11,491.323

payment 163.619 2,258.920 4,644.312 6,937.110 9,276.335 11,248.676

payqty 6,375.812 854,111.265 3,369,312.635 7,675,975.262 13,089,110.031 20,442,085.354

表 5 Elapse time for query processing (ms).

Table 5 Elapse time for query processing (ms).

table 10MB 100MB 200MB 300MB 400MB 500MB

rollup(payment) 18.383 176.208 411.081 611.993 839.870 1,048.303

rollup(region) 148.337 1460.107 2,984.948 4,457.116 5,441.833 7,446.223

rollup(regionpay) 180.320 1,809.195 3,721.951 5,464.89 7,340.956 9,347.355

structure-based concept hierarchy, and XML data-cube. We then

discussed OLAP extension to XQuery. For the implementation is-

sues, we use the path approach for mapping XML data to relations,

and we utilize UNION ALL to perform GROUP BY ROLLUP op-

eration for both structure- and value-based groupings. Our exper-

iments with large collections of XML data show that the GROUP

BY ROLLUP queries perform less than 10 sec. for 500MB XML

data. The results show the effectiveness of our proposed technique.

For the future research, we try to improve the performance of

data-cube construction. We also plan to investigate how to incor-

porate textual features such as word vectors of XML data into the

analytical processing.

Acknowledgments

This research is partly supported by the Grant-in-Aid for Scien-

tific Research (17700110) from Japan Society for the Promotion of

Science (JSPS), Japan, and the Grant-in-Aid for Scientific Research

on Priority Areas (18049005) from the Ministry of Education, Cul-

ture, Sports, Science and Technology (MEXT), Japan.

文 献
[1] World Wide Web consortium: Extensible Markup Language (XML)

1.0 (Third Edition), http://www.w3.org/TR/REC-xml. W3C Recom-
mendation 04 February 2004.

[2] Chantola Kit, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Towards
Analytical Processing of XML Data. InDBWS 2006, 2006.

[3] World Wide Web consortium: XML Path Language (XPath) Version
1.0, http://www.w3.org/TR/1999/REC-xpath-19991116. W3C Rec-
ommendation 16 November 1999.

[4] XQuery: A query language for XML, http://www.w3.org/TR/xquery.
W3C working draft 2001.

[5] Rajesh Bordawakar and Christian A. Lang. Analytical Processing of
XML Documents: Opportunities and Challenges.SIGMOD Record,
34(2):27–32, 2005.

[6] Mikael R. Jensen, Thomas H. Moller, and Torben Bach Pedersen.
Specifying OLAP Cubes on XML Data.SSDBM, pages 101–112,
2001.

[7] Dennis Pedersen, Karsten Riis, and Torben Bach Perdersen. XML-
Extended OLAP Querying.SSDBM, pages 195–206, 2002.

[8] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and
Shunsuke Uemura. XRel: A path-based approach to storage and
retrieval of XML documents using relational databases.ACM Trans-
actions on Internet Technology (TOIT), 1(1):110–141, 2001.

[9] David DeHaan, David Toman, Mariano P.Consens, and M. Tarmer

Ozsu. A Comprehensive XQuery to SQL Translation Using Dynamic
Interval Encoding.Proc. ACM SIGMOD 2003, pages 623–634, 2003.

付 録

1. Fact: Books from Sales Data

CREATE TABLE fact AS SELECT p1.pexp, n1.*,
n2.value AS jkey

FROM ptable p1, ptable p2, ntable n1,
ntable n2

WHERE n1.did = n2.did
AND n1.pid = p1.pid
AND p1.pexp LIKE ’/sales/%/b/%’
AND n1.tname LIKE ’b’
AND n2.pid = p2.pid
AND p2.pexp LIKE ’/sales/%/b/t’
AND n2.tname LIKE ’#TEXT’
AND n2.nnum LIKE n1.nnum || ’%’;

2. Dimension: Book Price from Book Category

CREATE TABLE dim AS SELECT p2.pexp, n2.*,
n3.value as jkey

FROM ptable p1, ptable p2, ptable p3,
ntable n1, ntable n2, ntable n3

WHERE n1.did = n2.did
AND n1.did = n3.did
AND n1.pid = p1.pid
AND p1.pexp LIKE ’/bookinfo/%/b’
AND n1.tname LIKE ’b’
AND n2.pid = p2.pid
AND p2.pexp LIKE ’/bookinfo/%/b/p’
AND n2.tname LIKE ’#TEXT’
AND n3.pid = p3.pid
AND p3.pexp LIKE ’/bookinfo/%/b/t’
AND n3.tname LIKE ’#TEXT’
AND n2.nnum LIKE n1.nnum || ’%’
AND n3.nnum LIKE n1.nnum || ’%’;

3. Sales XML Data-cube

SELECT *
FROM fact f, dim d
WHERE f.jkey = d.jkey;

— 8 —

