
1.  Introduction 
One of the main challenges in building 

enterprise applications has been to balance 
between general functionality and 
domain/scenario-specific customization. The lack 
of formal ways to extract, distill, and standardize 
the embedded domain knowledge has been a 
barrier to minimizing the cost of customization. 

In [14], information finding and information 
integration are presented as the two main 
challenges for the field of information technology. 
Although statistics based keyword searches are 
getting better, the computer system still does not 
understand the information it is finding for us. 
For example, how do we tell the computer to find 
me a dentist who is available next Tuesday 
afternoon in the southern area of Seoul? As for 
information integration, can a computer system 
automatically recognize that the ‘balance’ 
attribute in one bank’s database is the equivalent 
of the ‘amount’ field in the database of another 
bank? These are still very hard problems and the 

missing piece in this puzzle is semantics [14]. If 
the computer system is able to comprehend the 
semantics behind the data and entities it processes 
each day, it would be able to provide us with a set 
of services that are far more intelligent. 
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Semantic technology refers to the area of 
information technology that deals with the 
creation and management of semantics separately 
from data, content, and program code. It provides 
means to discover, manage, reason with, and 
utilize meanings. Separately managing the 
semantics of an application domain provides an 
opportunity to analyze domain knowledge, make 
domain assumptions explicit, separate domain 
knowledge from operational knowledge, provide 
common understanding of the information 
structure, and enable reuse of domain knowledge 
[12]. Applications of semantic technology include 
the Semantic Web [2], context-awareness, 
intelligent search and match, and information 
integration. 

At the core of semantic technology lies 



ontology. Ontology is a formal specification of 
concepts of the domain of interest [4]. Ontology 
provides a reference domain model that both 
human and software can refer to for various 
purposes such as search, browsing, 
interoperability, integration, and configuration 
[11]. Computer programs may utilize the ontology 
to infer semantic implications of a keyword or a 
query result. 

Research has been very active in this area in 
recent years, especially in the context of W3C’s 
Semantic Web [2] including the efforts for 
building a foundation for ontology (e.g., standard 
semantic markup languages such as RDF [9] and 
OWL [3]). Even with the rich amount of research 
in ontology, there are still gaps to be filled in 
actual deployment of the technology/concept in a 
real life commercial environment. The problems 
are hard especially in those applications that 
require well-defined semantics in mission critical 
operations. 

In this paper, we present some of the 
challenges in building and utilizing an ontology 
for commercial use and present a bottom-up 
strategy that addresses some of these challenges. 

 
2.  Ontology Implementation 

Ontology implementation is a very difficult 
task. The myriad of technical standards and 
specifications only address the formats of 
ontology. For example, RDF and OWL specify 
the syntax for how certain concepts and 
relationships should be represented but do not tell 
us whether ‘rock & roll’ and ‘music’ are related 
through a relationship called ‘genre’. In other 
words, the technical standards provide us with the 
tools (pen and paper) to write a book, while the 
formidable task of actually writing the book, i.e., 
filling the blank papers with contents, is left to the 
ontology implementer. Too many ontology 
projects have failed to live beyond proof-of-
concept demonstrations because a pragmatic 
system would require a huge amount of 
investment in building the contents of the 
ontology. For example, with over 21 years, 750 

person-years, and 75 million dollars, Cyc [10] 
hosts some 3,000,000 hand-entered facts and rules. 
The knowledge base has provided a number of 
compelling demos and presentations but the jury 
is still out on whether an enterprise level 
application can be built on it. 

Inference is an essential aspect of ontology 
which refers to the ability to extract new 
information about a concept by searching and 
following the relationships in the ontology. For 
example, given a class A and ontology O, the task 
to find the lowest class B in O that subsumes A is 
a basic inference (called classification in 
description logics [1]). Reasoning in the level of 
concepts and classes is called T-box reasoning and 
reasoning that involves instances of classes is 
called A-box reasoning. Inference is inherently 
NP-complete or harder, and most of the inference-
oriented ontology systems deal with T-box 
reasoning and do not scale well to A-box 
reasoning as the number of instances grows. 

Other issues that must be addressed in 
ontology implementation are listed below [5, 8]. 
 Modeling: Level of abstraction problem 

haunts all aspects of ontology design. 
Multiple views and taxonomies, often with 
conflicting semantics, present another 
challenge for the field engineer.  

 Ontology – DB Integration: The ontology 
can be modeled as meta data for the database, 
where the database alone represents the 
information content of the system and the 
ontology is a secondary facility. On the other 
hand, the ontology can be modeled as an 
integral part of the database, in which case, 
ontology must be part of all queries and 
operations. Trade-off includes 
implementation complexity, semantic 
richness, and efficiency. 

 Ontology Lifecycle Management: 
Populating the ontology is a daunting task 
which can make or break the project. The job 
is complicated by multiple formats, semantic 
mismatches, errors or dirty data in pre-
existing information sources. Change 



management (versions, mergers, 
decompositions, etc.) is another complicated 
issue. 

 Accountability and Control: One of the 
biggest concerns inhibiting ontology adoption 
in enterprise applications is its lack of control. 
When is an ontology complete, in the sense 
that it holds sufficient content to support all 
mission critical operations? Is the 
behavior/performance predictable? 

 Human Factors: Building and maintaining 
the ontology requires much more than 
software engineers. Domain experts must 
define the concepts and relationships of the 
domain model. Ontological information 
model is not a concept easily understood by 
non-computer/ontology experts. A set of 
intuitive guidelines must be provided. Easy-
to-use tools are also essential. 

 
3.  Issues in Business Implementation of 
Ontology 

We first list some of the business 
applications that can potentially benefit from the 
use of ontology. 
 Mobile Search: With the limited bandwidth 

and input/output features, even a marginal 
level of intelligence can enhance the user’s 
search experience in a mobile environment. 
Simple synonym extensions and location-
time based context filters can be used. 

 Personalized Contents Offerings: 
Collaborative filtering and other 
personalization and recommendation 
algorithms [13] can be enhanced by adding 
semantics to data pertaining to items 
(products) and customers. 

 Location Based Service: One of the key 
applications of context-aware systems is 
location based service where the system 
provides contents and services according to 
the context of the user location. Context is a 
highly semantic feature. 

 Information Service: Intelligent information 
services need to be personalized and context-

sensitive. The presentation of information 
can be enriched by supporting multiple 
taxonomies for browsing. 
We have observed that most practical 

enterprise applications including the set of 
services listed above would need only a relatively 
simple concept hierarchy and do not need the full 
scale inference capabilities of the ontology 
languages. For example, an ontology for location 
based service would not need thousands of classes 
and relationships but requires only a limited 
degree of inference to navigate through the 
relationship links. 

Several critical factors contribute to 
implementing a service that is intelligent and also 
makes practical business sense. First, a deep and 
accurate understanding of the transactional data is 
essential. The most effective class of 
recommendation algorithms in personalization 
services is collaborative filtering algorithms, and 
these require careful analysis of the transactional 
logs. The co-occurrence of certain pairs of values 
in transactions implies the existence of an 
ontological relationship between the values. 
Using simple data mining techniques, we can 
extract a considerable amount of relationships 
from the existing database. 

Second, a standardized and clean database is 
a necessary component for any type of quality 
service. The simplest form of ontology is a 
glossary [12]. As simple as it is, a standard 
glossary can be very effective in enhancing the 
quality of an information system. The column 
names of a database as well as the values in the 
records are all targets of control. Clean and 
standardized data is as important as a complex 
inference engine for intelligent services. 

Third, a simple but effective rule processing 
engine is required for executing the intelligent 
service. An expert rule stating “high income 
professionals are likely to be interested in stock 
related contents” is not an ontological rule that 
can be represented in OWL. However, such rules 
are key ingredients of a personalized service and 
have been used in CRM (customer relationship 



management) systems. Either the ontology 
(including its inference) model must be extended 
to accommodate such rules or seamless 
integration between the ontology system and the 
rule processing system must be provided. Also, 
the complexity of the inference must be tractable 
and controllable. 

Forth, an enterprise ontology system must 
promise adequate performance. The problem with 
most of the current ontology query processing 
systems is that they are in-memory based, i.e., 
rules and facts must all fit in main memory. For a 
moderately large set of ontology, these systems 
either crash or take too much time to be usable. 
We need a different approach for performance and 
scalability. 
 
4.  The Bottom-Up Strategy 

The current research efforts in ontology 
focus more on theoretic aspects such as technical 
specifications of OWL and the inference 
mechanism. Although these are foundational 
works that cannot be done without, we need to 
quickly build success stories in actual 
deployments. We propose in this section a 
bottom-up strategy that allows for fast 
deployment of ontology based services. The 
strategy is a result of our experience in building 
an operational product ontology system for a 
government procurement service [7, 8]. The 
system is designed to serve as a product ontology 
knowledge base; not only for the design and 
construction of product databases but also for 
search and discovery of products. Especially, the 
keyword-based searching over product ontology 
database demands different techniques from those 
over conventional document databases or 
relational databases, and was designed to reflect 
particular characteristics of an ontology.  
 
4.1.  Building the Ontology 

If we classify an enterprise ontology into 
instance level ontology and concept level ontology 
(roughly corresponding to the T-box and A-box in 
DL), the instance level volume would make up for 

more than 90% of the whole ontology (see figure 
1). We propose to build the ontology bottom-up 
from the instance level. The justification is that it 
makes sense to utilize the vast amount of 
information residing in the enterprise database. 
Furthermore, this approach generates results 
instantly. In addition to the extracted ontological 
features, the process provides detailed analysis of 
the current database state, which is an invaluable 
piece of information for database administrators.  

The instance level ontology is built in a 
batch fashion by bulk-loading and transforming 
the data from the existing records in the database. 
Since entities that have references to other entities 
should be built later than the referenced entities, 
transformations should be performed in a specific 
order to preserve the reference dependency of 
each entity. Since the automatically constructed 
ontology may not show the quality that the 
domain experts expect, methods for improving the 
quality are required. 

If a pattern occurs consistently in the 
instance level, it is a candidate for generalization 
into a concept level entry. For example, if all 46” 
TV sets have feature ‘widescreen’ then it can be 
conjectured that 46” is the size available only for 
widescreen TVs. This may be true or may only be 
a coincidence so domain experts should be 
involved in the generalization process. Such 
generalized piece of knowledge makes up the set 
of publishable domain ontology in figure 1. It is 
the class of ontology at the concept level that can 
be inferred from the instance level. 

Thus, the instance level ontology and the 
publishable domain ontology which is part of the 
concept level ontology are built bottom-up from 
the legacy databases. Then on top of these, we can 
always utilize general concept level ontology that 
can be imported from other sources such as Cyc. 
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Figure 1. Bottom-up construction of an enterprise ontology 

 
4.2  Inference 

As briefly mentioned previously, there are 
various types of rules that are used in an 
enterprise computing environment and not all of 
them can be expressed in ontological languages. 
Consider the case of a CRM system for a 
consumer electronics retail store. The ontological 
knowledge that 46” TV sets are always 
widescreen TVs can be helpful in correctly 
identifying the customers who purchased 
widescreen TV sets (assuming there are 46” TV 
sets that are not annotated as widescreen). So, it 
makes sense to somehow integrate (or at least 
consolidate) the CRM knowledge base with the 
ontology. Since both knowledge bases have rules, 
we need to carefully identify the roles and 
characteristics of the various types of rules for 
consolidation. 

First, there are rules that are part of the 
ontology. These are the rules that constrain the 
relationships or cardinality of ontological entities. 
Inference, such as subsumption and instance 
checking in description logics, must be supported 
to utilize these rules. 

The second type of rules is the if-then-else 
pattern rules used in conventional rule-based 
system such as CRM. An example would be “if 

person x is a female and has a professional job 
then there is a 30% chance she enjoys concerts.” 
Such rules are often extracted as a result of data 
mining exercises. One might argue that it is 
possible to represent this piece of information in 
OWL. While it is true, we believe doing so serves 
no practical value since the CRM system is tuned 
to process and utilize this type of rules much more 
efficiently than a general ontology inference 
engine. 

The third type of rules is action rules such as 
triggers and marketing operation directives. An 
example is “if person x purchases product y, then 
push product z on her screen.” Again this type of 
rules can be found in CRM systems and 
marketing campaign management tools. 

We propose to separate the rules according to 
their use and have different systems manage each 
class of rules. During the ontology construction 
phase, it would be worthwhile to re-examine the 
rules in other systems and regroup the rules 
according to their roles and features. Each group 
of rules can then be stored and managed by the 
respective subsystem that is designed and tuned 
for the specific purpose. An example of rule 
consolidation and corresponding subsystems is 
shown in figure 2. 
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Figure 2. Consolidation of rules and subsystems 

 
 
4.3.  Scalability 

Our goal is not only to design a ‘conceptual’ 
ontology model but also to implement it as an 
operational ontology database. One way to 
achieve this goal may be through using an 
ontology language such as OWL and building an 
OWL knowledge base that represents the 
intentional and extensional concepts and 
relationships for the ontology. This approach, 
mainly favored by the research community, may 
be beneficial for integrating the domain ontology 
model with an inference engine for the language.  

However, it is technically too complicated to 
represent and comprehend the domain for a 
domain expert who has little knowledge in the 
formal language. More importantly, from a 
practical point of view, there is no publicly known 
robust engine to manage a large knowledge base 
with practical performance. 

For example, our product ontology database 
contains over 700,000 item level products and 
more than 900,000 concepts including product 

classes, attributes and unit of measures (UOM). 
Concepts are linked by semantic relationships and 
there are more than 21 million semantic links 
representing these relationships. Needless to say, 
the size of the database keeps growing every day. 
As for reasoning, we only needed a rather limited-
set of reasoning capabilities such as transitivity 
and inverse relationships. Naturally, the general 
purpose reasoning capability of an OWL engine 
was considered an over-kill. 

An alternative way is to build an ontology 
database on a commercially operational database 
system such as a relational or object-relational 
DBMS. This way we can take advantage of 
existing standards for data management and the 
DBMS features that have been optimized over the 
years in terms of robustness, scalability, and 
performance. Since a DBMS by itself does not 
support reasoning functions, the set of reasoning 
capabilities must be implemented within the 
ontology applications. Even so, we believe that 
this approach is a sure way to make an ontology 



database operational. 
Table 1, borrowed from [6], shows the key 

differences between these two comparative 
methodologies. In order to balance between these 
two extreme goals and characteristics, we need an 
adaptive approach which assures scalability and 
extensibility. 

 

Table 1. Model implementation methodology 

 
OWL-based 
knowledgebase 
approach 

Relational 
database 
approach 

Theoretical 
background 

OWL, DAML+OIL, 
Topic Maps, 
Description Logics, 
FOL, … 

EER, Table, 
SQL, Relational 
Algebra & 
Calculus, … 

Pragmatism Theoretical Operational and 
practical 

Ontology 
representation 

Rich for various 
semantic 
constraints 

Rather limited 
for complicated 
semantic 
constraints 

Ontological 
Reasoning or 
inference 

Supported by OWL 
reasoning engine. 
Reasoning 
complexity may be 
high. 

Limited. 
Reasoning 
capabilities 
coded within 
applications. 

Commercial 
level 

Publicly no engine 
is available to 
support a large 
knowledge base. 

Many DBMSs 
are 
commercially 
available. 

 

We propose to build an ontology database on 
top of an operational database system and, at the 
same time, provide an exporting mechanism from 
the database to an OWL knowledge base. In other 
words, each modeling construct in an object-
relational database can be translated into the 
corresponding OWL representation. Then a set of 
translated representation may form an OWL 
knowledge base, and the ontological query and 
reasoning capabilities of an OWL engine could be 
exploited. In fact, within our project, we have 
developed a module that translates relational 
tables representing concepts such as products, 
classification schemes, attributes and UOMs (unit 
of measure), and their relationships into OWL 
representations. 
 
4.4  The Ontology Manager 
The ontology manager is the software system 
responsible for all aspects of the ontology; from 
construction of the ontology and interoperation 
with other systems within the enterprise to 
evolution and change management. The ontology 
manager should support the bottom-up approach 
described in this section. A simple sketch of its 
architecture is shown in figure 3.
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Figure 3. The ontology manager 



 
5. Conclusion 

Semantics is essential in providing intelligent 
context-aware services. Ontology is the core 
component of providing semantics to an 
information system. Building an ontology that is 
robust and efficient enough to support 
commercial operations is a formidable challenge. 

We have presented a bottom-up strategy for 
this challenge. It is based on our experience on 
building a large scale instance level ontology that 
is currently being used in a public setting. This is 
part of an ongoing effort, i.e., details of the 
strategy is constantly refined at this moment. 
What we have presented here represent the 
philosophy that underlies our approach. 

We are currently applying our methods to a 
digital content service environment where the 
usage logs and tags and blogs are our target for 
instance analysis. 
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