
1. Introduction
One of the main challenges in building

enterprise applications has been to balance
between general functionality and
domain/scenario-specific customization. The lack
of formal ways to extract, distill, and standardize
the embedded domain knowledge has been a
barrier to minimizing the cost of customization.

In [14], information finding and information
integration are presented as the two main
challenges for the field of information technology.
Although statistics based keyword searches are
getting better, the computer system still does not
understand the information it is finding for us.
For example, how do we tell the computer to find
me a dentist who is available next Tuesday
afternoon in the southern area of Seoul? As for
information integration, can a computer system
automatically recognize that the ‘balance’
attribute in one bank’s database is the equivalent
of the ‘amount’ field in the database of another
bank? These are still very hard problems and the

missing piece in this puzzle is semantics [14]. If
the computer system is able to comprehend the
semantics behind the data and entities it processes
each day, it would be able to provide us with a set
of services that are far more intelligent.

A Bottom-Up Strategy for Enterprise Ontology Implementation

Sang-goo Lee1, Taehee Lee2, Dongkyu Kim2, Jonghoon Chun3

1 Center for E-Business Technology, Seoul National University, Seoul, Korea
2 Prompt, Inc., Seoul, Korea

3 Myongji University, Kyungkido, Korea

Abstract The benefits of semantics for intelligent and interoperable services have been
widely accepted in the computing community. Semantics can also improve the quality of
software systems that deal with the every day operations of an enterprise. However, building
and utilizing an ontology in the enterprise environment is very difficult and risky since
ontology inference is complex, slow, and often unpredictable. Also, ontology management is
not scalable and building an ontology is a complicated process that takes a huge amount of
resources. Presented is a bottom-up strategy for large scale ontology implementation in
commercial settings. Important components of the strategy include harvesting instance level
ontology, creating success cases early, and ensuring scalability.

Keywords ontology, semantic technology, enterprise systems,

Semantic technology refers to the area of
information technology that deals with the
creation and management of semantics separately
from data, content, and program code. It provides
means to discover, manage, reason with, and
utilize meanings. Separately managing the
semantics of an application domain provides an
opportunity to analyze domain knowledge, make
domain assumptions explicit, separate domain
knowledge from operational knowledge, provide
common understanding of the information
structure, and enable reuse of domain knowledge
[12]. Applications of semantic technology include
the Semantic Web [2], context-awareness,
intelligent search and match, and information
integration.

At the core of semantic technology lies

ontology. Ontology is a formal specification of
concepts of the domain of interest [4]. Ontology
provides a reference domain model that both
human and software can refer to for various
purposes such as search, browsing,
interoperability, integration, and configuration
[11]. Computer programs may utilize the ontology
to infer semantic implications of a keyword or a
query result.

Research has been very active in this area in
recent years, especially in the context of W3C’s
Semantic Web [2] including the efforts for
building a foundation for ontology (e.g., standard
semantic markup languages such as RDF [9] and
OWL [3]). Even with the rich amount of research
in ontology, there are still gaps to be filled in
actual deployment of the technology/concept in a
real life commercial environment. The problems
are hard especially in those applications that
require well-defined semantics in mission critical
operations.

In this paper, we present some of the
challenges in building and utilizing an ontology
for commercial use and present a bottom-up
strategy that addresses some of these challenges.

2. Ontology Implementation

Ontology implementation is a very difficult
task. The myriad of technical standards and
specifications only address the formats of
ontology. For example, RDF and OWL specify
the syntax for how certain concepts and
relationships should be represented but do not tell
us whether ‘rock & roll’ and ‘music’ are related
through a relationship called ‘genre’. In other
words, the technical standards provide us with the
tools (pen and paper) to write a book, while the
formidable task of actually writing the book, i.e.,
filling the blank papers with contents, is left to the
ontology implementer. Too many ontology
projects have failed to live beyond proof-of-
concept demonstrations because a pragmatic
system would require a huge amount of
investment in building the contents of the
ontology. For example, with over 21 years, 750

person-years, and 75 million dollars, Cyc [10]
hosts some 3,000,000 hand-entered facts and rules.
The knowledge base has provided a number of
compelling demos and presentations but the jury
is still out on whether an enterprise level
application can be built on it.

Inference is an essential aspect of ontology
which refers to the ability to extract new
information about a concept by searching and
following the relationships in the ontology. For
example, given a class A and ontology O, the task
to find the lowest class B in O that subsumes A is
a basic inference (called classification in
description logics [1]). Reasoning in the level of
concepts and classes is called T-box reasoning and
reasoning that involves instances of classes is
called A-box reasoning. Inference is inherently
NP-complete or harder, and most of the inference-
oriented ontology systems deal with T-box
reasoning and do not scale well to A-box
reasoning as the number of instances grows.

Other issues that must be addressed in
ontology implementation are listed below [5, 8].
 Modeling: Level of abstraction problem

haunts all aspects of ontology design.
Multiple views and taxonomies, often with
conflicting semantics, present another
challenge for the field engineer.

 Ontology – DB Integration: The ontology
can be modeled as meta data for the database,
where the database alone represents the
information content of the system and the
ontology is a secondary facility. On the other
hand, the ontology can be modeled as an
integral part of the database, in which case,
ontology must be part of all queries and
operations. Trade-off includes
implementation complexity, semantic
richness, and efficiency.

 Ontology Lifecycle Management:
Populating the ontology is a daunting task
which can make or break the project. The job
is complicated by multiple formats, semantic
mismatches, errors or dirty data in pre-
existing information sources. Change

management (versions, mergers,
decompositions, etc.) is another complicated
issue.

 Accountability and Control: One of the
biggest concerns inhibiting ontology adoption
in enterprise applications is its lack of control.
When is an ontology complete, in the sense
that it holds sufficient content to support all
mission critical operations? Is the
behavior/performance predictable?

 Human Factors: Building and maintaining
the ontology requires much more than
software engineers. Domain experts must
define the concepts and relationships of the
domain model. Ontological information
model is not a concept easily understood by
non-computer/ontology experts. A set of
intuitive guidelines must be provided. Easy-
to-use tools are also essential.

3. Issues in Business Implementation of
Ontology

We first list some of the business
applications that can potentially benefit from the
use of ontology.
 Mobile Search: With the limited bandwidth

and input/output features, even a marginal
level of intelligence can enhance the user’s
search experience in a mobile environment.
Simple synonym extensions and location-
time based context filters can be used.

 Personalized Contents Offerings:
Collaborative filtering and other
personalization and recommendation
algorithms [13] can be enhanced by adding
semantics to data pertaining to items
(products) and customers.

 Location Based Service: One of the key
applications of context-aware systems is
location based service where the system
provides contents and services according to
the context of the user location. Context is a
highly semantic feature.

 Information Service: Intelligent information
services need to be personalized and context-

sensitive. The presentation of information
can be enriched by supporting multiple
taxonomies for browsing.
We have observed that most practical

enterprise applications including the set of
services listed above would need only a relatively
simple concept hierarchy and do not need the full
scale inference capabilities of the ontology
languages. For example, an ontology for location
based service would not need thousands of classes
and relationships but requires only a limited
degree of inference to navigate through the
relationship links.

Several critical factors contribute to
implementing a service that is intelligent and also
makes practical business sense. First, a deep and
accurate understanding of the transactional data is
essential. The most effective class of
recommendation algorithms in personalization
services is collaborative filtering algorithms, and
these require careful analysis of the transactional
logs. The co-occurrence of certain pairs of values
in transactions implies the existence of an
ontological relationship between the values.
Using simple data mining techniques, we can
extract a considerable amount of relationships
from the existing database.

Second, a standardized and clean database is
a necessary component for any type of quality
service. The simplest form of ontology is a
glossary [12]. As simple as it is, a standard
glossary can be very effective in enhancing the
quality of an information system. The column
names of a database as well as the values in the
records are all targets of control. Clean and
standardized data is as important as a complex
inference engine for intelligent services.

Third, a simple but effective rule processing
engine is required for executing the intelligent
service. An expert rule stating “high income
professionals are likely to be interested in stock
related contents” is not an ontological rule that
can be represented in OWL. However, such rules
are key ingredients of a personalized service and
have been used in CRM (customer relationship

management) systems. Either the ontology
(including its inference) model must be extended
to accommodate such rules or seamless
integration between the ontology system and the
rule processing system must be provided. Also,
the complexity of the inference must be tractable
and controllable.

Forth, an enterprise ontology system must
promise adequate performance. The problem with
most of the current ontology query processing
systems is that they are in-memory based, i.e.,
rules and facts must all fit in main memory. For a
moderately large set of ontology, these systems
either crash or take too much time to be usable.
We need a different approach for performance and
scalability.

4. The Bottom-Up Strategy

The current research efforts in ontology
focus more on theoretic aspects such as technical
specifications of OWL and the inference
mechanism. Although these are foundational
works that cannot be done without, we need to
quickly build success stories in actual
deployments. We propose in this section a
bottom-up strategy that allows for fast
deployment of ontology based services. The
strategy is a result of our experience in building
an operational product ontology system for a
government procurement service [7, 8]. The
system is designed to serve as a product ontology
knowledge base; not only for the design and
construction of product databases but also for
search and discovery of products. Especially, the
keyword-based searching over product ontology
database demands different techniques from those
over conventional document databases or
relational databases, and was designed to reflect
particular characteristics of an ontology.

4.1. Building the Ontology

If we classify an enterprise ontology into
instance level ontology and concept level ontology
(roughly corresponding to the T-box and A-box in
DL), the instance level volume would make up for

more than 90% of the whole ontology (see figure
1). We propose to build the ontology bottom-up
from the instance level. The justification is that it
makes sense to utilize the vast amount of
information residing in the enterprise database.
Furthermore, this approach generates results
instantly. In addition to the extracted ontological
features, the process provides detailed analysis of
the current database state, which is an invaluable
piece of information for database administrators.

The instance level ontology is built in a
batch fashion by bulk-loading and transforming
the data from the existing records in the database.
Since entities that have references to other entities
should be built later than the referenced entities,
transformations should be performed in a specific
order to preserve the reference dependency of
each entity. Since the automatically constructed
ontology may not show the quality that the
domain experts expect, methods for improving the
quality are required.

If a pattern occurs consistently in the
instance level, it is a candidate for generalization
into a concept level entry. For example, if all 46”
TV sets have feature ‘widescreen’ then it can be
conjectured that 46” is the size available only for
widescreen TVs. This may be true or may only be
a coincidence so domain experts should be
involved in the generalization process. Such
generalized piece of knowledge makes up the set
of publishable domain ontology in figure 1. It is
the class of ontology at the concept level that can
be inferred from the instance level.

Thus, the instance level ontology and the
publishable domain ontology which is part of the
concept level ontology are built bottom-up from
the legacy databases. Then on top of these, we can
always utilize general concept level ontology that
can be imported from other sources such as Cyc.

Instance Level Ontology
• Domain- specific data-

• Transactional data

• Mapping between upper
ontology and legacy data

• Large volume

• Real- time data

Concept Level Ontology

Publishable
Domain
Ontology

General Ontology

Export general & reusable
knowledge

Semi-automatic
extraction Legacy DB & Personal contents

Over 90% of Ontology

Less than 10% of Ontology

Figure 1. Bottom-up construction of an enterprise ontology

4.2 Inference

As briefly mentioned previously, there are
various types of rules that are used in an
enterprise computing environment and not all of
them can be expressed in ontological languages.
Consider the case of a CRM system for a
consumer electronics retail store. The ontological
knowledge that 46” TV sets are always
widescreen TVs can be helpful in correctly
identifying the customers who purchased
widescreen TV sets (assuming there are 46” TV
sets that are not annotated as widescreen). So, it
makes sense to somehow integrate (or at least
consolidate) the CRM knowledge base with the
ontology. Since both knowledge bases have rules,
we need to carefully identify the roles and
characteristics of the various types of rules for
consolidation.

First, there are rules that are part of the
ontology. These are the rules that constrain the
relationships or cardinality of ontological entities.
Inference, such as subsumption and instance
checking in description logics, must be supported
to utilize these rules.

The second type of rules is the if-then-else
pattern rules used in conventional rule-based
system such as CRM. An example would be “if

person x is a female and has a professional job
then there is a 30% chance she enjoys concerts.”
Such rules are often extracted as a result of data
mining exercises. One might argue that it is
possible to represent this piece of information in
OWL. While it is true, we believe doing so serves
no practical value since the CRM system is tuned
to process and utilize this type of rules much more
efficiently than a general ontology inference
engine.

The third type of rules is action rules such as
triggers and marketing operation directives. An
example is “if person x purchases product y, then
push product z on her screen.” Again this type of
rules can be found in CRM systems and
marketing campaign management tools.

We propose to separate the rules according to
their use and have different systems manage each
class of rules. During the ontology construction
phase, it would be worthwhile to re-examine the
rules in other systems and regroup the rules
according to their roles and features. Each group
of rules can then be stored and managed by the
respective subsystem that is designed and tuned
for the specific purpose. An example of rule
consolidation and corresponding subsystems is
shown in figure 2.

DB Parsing & Annotation

OWL Rules

Ontology rules

IF-THEN Rules

Action rules

IR Oriented Rules

Search stats

Pattern Rules

Patterns

Supporting
Solutions

Computation Layer

Inference Layer

Consistency Checking
Satisfiability
Sumption

Instance Checking

OWL Reasoning

Instance Retrieval
Rule Invocation

Role Execution

Instance Ranking &
Searching

Probabilistic
Reasoning

Association Rule
Mining

Clustering

Data Mining

Context
Information

Preference
Purchase
pattern

Relationship
between individuals

Best service
network

Legacy transactional systems

Legacy Database Marketing Knowledge

Inference compilation

Figure 2. Consolidation of rules and subsystems

4.3. Scalability

Our goal is not only to design a ‘conceptual’
ontology model but also to implement it as an
operational ontology database. One way to
achieve this goal may be through using an
ontology language such as OWL and building an
OWL knowledge base that represents the
intentional and extensional concepts and
relationships for the ontology. This approach,
mainly favored by the research community, may
be beneficial for integrating the domain ontology
model with an inference engine for the language.

However, it is technically too complicated to
represent and comprehend the domain for a
domain expert who has little knowledge in the
formal language. More importantly, from a
practical point of view, there is no publicly known
robust engine to manage a large knowledge base
with practical performance.

For example, our product ontology database
contains over 700,000 item level products and
more than 900,000 concepts including product

classes, attributes and unit of measures (UOM).
Concepts are linked by semantic relationships and
there are more than 21 million semantic links
representing these relationships. Needless to say,
the size of the database keeps growing every day.
As for reasoning, we only needed a rather limited-
set of reasoning capabilities such as transitivity
and inverse relationships. Naturally, the general
purpose reasoning capability of an OWL engine
was considered an over-kill.

An alternative way is to build an ontology
database on a commercially operational database
system such as a relational or object-relational
DBMS. This way we can take advantage of
existing standards for data management and the
DBMS features that have been optimized over the
years in terms of robustness, scalability, and
performance. Since a DBMS by itself does not
support reasoning functions, the set of reasoning
capabilities must be implemented within the
ontology applications. Even so, we believe that
this approach is a sure way to make an ontology

database operational.
Table 1, borrowed from [6], shows the key

differences between these two comparative
methodologies. In order to balance between these
two extreme goals and characteristics, we need an
adaptive approach which assures scalability and
extensibility.

Table 1. Model implementation methodology

OWL-based
knowledgebase
approach

Relational
database
approach

Theoretical
background

OWL, DAML+OIL,
Topic Maps,
Description Logics,
FOL, …

EER, Table,
SQL, Relational
Algebra &
Calculus, …

Pragmatism Theoretical Operational and
practical

Ontology
representation

Rich for various
semantic
constraints

Rather limited
for complicated
semantic
constraints

Ontological
Reasoning or
inference

Supported by OWL
reasoning engine.
Reasoning
complexity may be
high.

Limited.
Reasoning
capabilities
coded within
applications.

Commercial
level

Publicly no engine
is available to
support a large
knowledge base.

Many DBMSs
are
commercially
available.

We propose to build an ontology database on
top of an operational database system and, at the
same time, provide an exporting mechanism from
the database to an OWL knowledge base. In other
words, each modeling construct in an object-
relational database can be translated into the
corresponding OWL representation. Then a set of
translated representation may form an OWL
knowledge base, and the ontological query and
reasoning capabilities of an OWL engine could be
exploited. In fact, within our project, we have
developed a module that translates relational
tables representing concepts such as products,
classification schemes, attributes and UOMs (unit
of measure), and their relationships into OWL
representations.

4.4 The Ontology Manager
The ontology manager is the software system
responsible for all aspects of the ontology; from
construction of the ontology and interoperation
with other systems within the enterprise to
evolution and change management. The ontology
manager should support the bottom-up approach
described in this section. A simple sketch of its
architecture is shown in figure 3.

Web

Information

Information
Information

Information

Information Information

Enrichment Layer

Collection Layer

Legacy
DB

Other Data
Sources

WebWeb

▪ ▪ ▪

Modeling

Mapping

Duplicating
Checking

Building

Integrating

Inference
Setting

Ontology
Database

Ontology
Manager Service

ServiceService

Service

Inference LayerOntology
Revolution

Figure 3. The ontology manager

5. Conclusion

Semantics is essential in providing intelligent
context-aware services. Ontology is the core
component of providing semantics to an
information system. Building an ontology that is
robust and efficient enough to support
commercial operations is a formidable challenge.

We have presented a bottom-up strategy for
this challenge. It is based on our experience on
building a large scale instance level ontology that
is currently being used in a public setting. This is
part of an ongoing effort, i.e., details of the
strategy is constantly refined at this moment.
What we have presented here represent the
philosophy that underlies our approach.

We are currently applying our methods to a
digital content service environment where the
usage logs and tags and blogs are our target for
instance analysis.

References
1. F. Baader, D. Calvanese, D. McGuinness, D.

Nardi, P. Patel-Schneider (eds.), The
Description Logic Handbook, Cambridge
University Press, 2002.

2. T. Berners-Lee, J. Hendler, O. Lassila, The
Semantic Web, Scientific American, May
2001.

3. M. Dean, G. Schreiber (Eds.), OWL Web
Ontology Language Reference, W3C
Recommendation, 2004.

4. T. R. Gruber, A Translation Approach to
Portable Ontologies, Knowledge Acquisition,
5(2):199-220, 1993.

5. D. Kim, Y. Chang, J. Lee, S.-g. Lee,
Ontological Approaches to Enterprise
Applications, 23rd International Conference
on Conceptual Modeling (ER2004), 2004, 11
/ Lecture Notes in Computer Science (Vol.
3288, pp. 838-840).

6. I. Lee, S. Lee, T. Lee, S. Lee, D. Kim, J.
Chun, H. Lee, J. Shim, Practical Issues for
Building a Product Ontology System,
International Workshop on Data
Engineering Issues in E-Commerce
(DEEC2005), IEEE Society, 2005.

7. T. Lee, S. Lee, I. Lee, S.-g. Lee, D. Kim, J.

Chun, H. Lee, J. Shim, Building an
Operational Product Ontology System,
Electronic Commerce Research and
Application (ECRA), Vol 5. No 1 (Jan 2006).

8. T. Lee, J. Shim, H. Lee, S.-g. Lee, A
Pragmatic Approach to Model and Exploit
the Semantics of Product Information,
Journal on Data Semantics VII, pp. 242-266.
2006.

9. F. Manola, E. Miller (eds.), Resource
Description Framework (RDF) Primer,
W3C Recommendation, 2004.

10. C. Matuszek, M. Witbrock, R.C. Kahlert, J.
Cabral, D. Schneider, P. Shah, D. Lenat,
Searching for Common Sense: Populating
Cyc from the Web, 20th National
Conference on Artificial Intelligence, July
2005.

11. D. L. McGuinness, Ontologies Come of
Age.: The Semantic Web: Why, What, and
How (D. Fensel, et al., eds.), MIT Press,
2001.

12. N. F. Noy, D. McGuinness, Ontology
Development 101: A Guide to creating your
first Ontology, Stanford KSL Technical
Report, KSL-01-05, 2000.

13. B. Sarwar, et al, Item-based Collaborative
Filtering Recommendation Algorithms,
ACM WWW10, 2001.

14. H. Stuckenschmidt, F. van Harmelen,
Information Sharing on the Semantic Web,
Springer, 2005.

