
A Single Index Approach for Distortion-Free Time-Series Subsequence Matching

Yang-Sae Moon�, Woong-Kee Loh�, and Jinho Kim�

�Department of Computer Science, Kangwon National University
192-1, Hyoja2-Dong, Chunchun, Kangwon 200-701, Korea

�Department of Computer Science & Engineering, University of Minnesota
4-192, EE/CS Building, 200 Union Street SE, Minneapolis, MN 55455

ysmoon@kangwon.ac.kr, lohw@cs.umn.edu, jhkim@kangwon.ac.kr

Abstract

In this paper we propose a new method for distortion-
free time-series subsequence matching. Our method is
distortion-free in the sense that it performs preprocessing
on time-series to remove the distortions of offset translation
and amplitude scaling at the same time. We call this pre-
processing as normalization transform in this paper. Pre-
vious work on the normalization-transformed subsequence
matching has a problem of incurring index overhead since it
should build multiple indexes for supporting arbitrary query
lengths. To overcome this index overhead, we adopt a single
index approach into the normalization-transformed subse-
quence matching. For the single index approach, we first
provide the new notion of inclusion-normalization trans-
form by generalizing the original definition of normaliza-
tion transform. We then formally prove correctness of the
proposed normalization-transformed subsequence match-
ing method that exploits the inclusion-normalization. We
also describe subsequence matching and index building al-
gorithms to implement the proposed method. Experimen-
tal results for real stock data show that our method im-
proves performance by up to 2.5-2.8 times over the previ-
ous method. We believe that our single index approach for
distortion-free subsequence matching can be widely used in
many applications for finding ‘real’ similar time-series.

1 Introduction

Typical examples of time-series data include stock
prices, biomedical measurements, network traffic data, and
financial data [1, 4, 5, 6, 14]. The time-series data stored
in a database are called data sequences, and those given
by users are called query sequences. And, finding data
sequences similar to the given query sequence from the
database is called similar sequence matching [1, 4, 9, 15].
Two sequences � � �� ���� � ���� ���� � ���� and � �
�� ���� � ���� ���� � ���� are said to be similar if the dis-
tance ����� � is less than or equal to the user-specified

tolerance � [1, 4, 9, 11]. In this paper, we use the Eu-
clidean distance (�

���
����� ���� � �����)1, which has

been widely used in [1, 3, 4, 7, 8, 9, 10], as the distance
function ����� �, and define that � and � are in �-match
if ����� � is less than or equal to �.

In this paper we propose a new method for distortion-
free time-series subsequence matching. Our method is
distortion-free in the sense that it performs preprocess-
ing [6, 8, 13, 15] on time-series to remove the distortions
of offset translation and amplitude scaling at the same
time. We call this preprocessing as normalization trans-
form [8, 13] in this paper. Thus, in other words, in this pa-
per we focus on the subsequence matching that supports
normalization transform. Here, the subsequence match-
ing[4, 7, 9] is the problem of finding subsequences simi-
lar to a query sequence of arbitrary length. Normalization
transform, which is known to be very useful for finding the
overall trend of time-series data [8], converts a given se-
quence into a new sequence by using the mean and the stan-
dard deviation of the sequence. The normalization trans-
form enables finding sequences with similar fluctuation pat-
terns even though they are not close to each other before the
normalization transform [8]. Including the definition of nor-
malization transform, we summarize the notation to be used
throughout the paper in Table 1.

The normalization-transformed subsequence matching
is defined as a similarity model that uses the distance
between two normalization-transformed sequences � and
	�� �
� to determine whether two sequences are in �-match
or not [8]. That is, given a query sequence � and toler-
ance �, the normalization-transformed subsequence match-
ing is defined as the problem of finding 	�� �
� that sat-
isfies ����	�� �
�� � �. Loh et al. [8] have proposed
a novel solution for the normalization-transformed subse-
quence matching. They have introduced the notion of in-
dex interpolation that constructs multiple indexes for mul-

1In addition to the Euclidean distance, any �� distance (�
�
���

��� ������ � �����) including the Manhattan distance (� ��) and
the maximum distance (� ��) can be also used as a similarity mea-
sure [7].

Table 1. Summary of notation.
Symbols Definitions

��� � �� Subsequence of �, including entries from the �-th one to the �-th
����� ���� Mean and standard deviation of sequence �

� Normalization transformed sequence of �
�
���� � ���������

����

�

��� � �� Subsequence of �, including entries from the �-th one to the �-th
��� � �� Normalization transformed sequence of subsequence ��� � �� (by using ����� � ��� and ����� � ���)
�� The �-th disjoint window of sequence � (� ����� �� � � � � � � � ��)
�� The �-th disjoint window of � (� ���� � �� � � � � � � � ��)
� Length of the sliding/disjoint windows[4, 9]

tiple window sizes. Their solution, however, causes a seri-
ous problem that, as the number of indexes increases, index
maintenance overhead would also increase to maintain mul-
tiple indexes.

To overcome this index overhead, in this paper we
adopt a single index approach [11] into the normalization-
transformed subsequence matching. To explain our single
approach, we first provide the new notion of inclusion-nor-
malization transform that normalizes a window 	�� � ��
against 	�� �
� �� � �

 � ��. That is, to normal-
ize a window 	�� � ��, the inclusion-normalization trans-
form uses 	�� �
� that includes the window while the
original normalization transform uses 	�� � �� itself. We
then formally show that, if constructing only one index us-
ing the inclusion-normalization transform, we can perform
the normalization-transformed subsequence matching cor-
rectly. That is, we build only one index as the following
steps: 1) data sequences are divided into fixed-size win-
dows; 2) by using inclusion-normalization transform, each
window is converted into multiple transformed windows for
every possible subsequence length; and 3) each transformed
window is mapped into a lower-dimensional point in a mul-
tidimensional index. After building the index, we can per-
form the normalization-transformed subsequence matching
by searching the index.

By applying the inclusion-normalization transform to
Faloutsos et al.’s subsequence matching method (we simply
call it FRM by taking authors’ initials.) [4, 9], we propose
a new normalization-transformed subsequence matching
method. That is, we propose the FRM-based normalization-
transformed subsequence matching method by using the no-
tion of inclusion-normalization transform. Also, to guaran-
tee correctness of our method, we present a theorem and for-
mally prove it. We then present index building and subse-
quence matching algorithms to implement the FRM-based
normalization-transformed subsequence matching method.
Through experiments, we also show that our method im-
proves performance compared with the previous method by
Loh et al. [8].

The rest of this paper is organized as follows. Section 2

describes related work and explains motivation of the re-
search. Section 3 proposes a single index approach for
the normalization transformed subsequence matching. Sec-
tion 4 presents the results of performance evaluation. Sec-
tion 5 summarizes and concludes the paper.

2 Related Work

We first review Agrawal et al.’s whole matching solu-
tion [1] that many other subsequence matching solutions
have evolved from. In the index building algorithm,
each data sequences of length � is transformed into � -
dimensional points (� � �, we call it lower-dimensional
transformation), and the transformed points are stored
into an R�-tree [2]. Here, the function used for lower-
dimensional transformation is called the feature extraction
function [3, 4, 9, 10]. In the similar sequence matching al-
gorithm, a query sequence is similarly transformed to an
� -dimensional point, and a range query is constructed us-
ing the point and the tolerance �. Then, by evaluating the
range query using the index, the candidates that are po-
tentially in �-match with the query sequence are identified.
This method guarantees there be no false dismissal (i.e., it
does not miss a sequence in the result set), but may cause
false alarms (i.e., candidates that do not qualify) because
it uses only � features instead of �. Thus, for each candi-
date sequence obtained, the actual data sequence is accessed
from the disk; the distance from the query sequence is com-
puted; and the candidate is discarded if it is a false alarm.
This last step, which eliminates false alarms, is called the
post-processing step [1, 4, 9, 10].

Faloutsos et al.[4] have proposed a subsequence match-
ing method as a generalization of the whole matching. FRM
uses the window construction method of dividing data se-
quences into sliding windows and a query sequence into
disjoint windows. In the index building algorithm, FRM
transforms each data window to an � -dimensional point and
stores the point into the R�-tree. However, dividing data se-
quences into sliding windows causes a serious problem of
generating too many points stored into the index [4, 9]. To

solve this problem, FRM does not store individual points
directly into the R�-tree, but stores only MBRs (minimum
bounding rectangles) that contains hundreds or thousands
of the � -dimensional points. In the subsequence matching
algorithm, FRM performs the matching correctly based on
the following Eq. (1). In Eq. (1), � � ����������.

��	��� � � ��
��
���

����� ��� � ��
�
� (1)

According to Eq. (1), FRM divides a query sequence
into disjoint windows; transforms each window to an � -
dimensional point; makes a range query using the point
and the tolerance ��

�
�; and constructs a candidate set

by searching the R�-tree. Finally, it performs the post-
processing step to eliminate false alarms.

DualMatch [9, 7] and GeneralMatch [10] improve per-
formance in range subsequence matching by using differ-
ent window construction methods from FRM. By introduc-
ing the notion of duality in constructing windows, Dual-
Match performs subsequence matching by dividing the data
sequences into disjoint windows and the query sequence
into sliding windows. GeneralMatch defines J-sliding win-
dows and J-disjoint windows by the generalization of slid-
ing windows and disjoint windows, respectively, and per-
forms subsequence matching using these generalized win-
dows. Except for a difference in the window construction
mechanism, index building and subsequence matching al-
gorithms of DualMatch and GeneralMatch are similar to
those of FRM.

Loh et al. [8] have shown that FRM cannot be di-
rectly used for the normalization-transformed subsequence
matching, i.e., we cannot use FRM for the distortion-free
subsequence matching directly. The reason is that Eq. (1)
in FRM do not hold any more for the normalization trans-
formed sequences. To solve the problem, Loh et al. [8] have
proved that the following Eq. (2) holds and used Eq. (2) for
the normalization-transformed subsequence matching.

��	��� � � �� ��	�� �
�� ��� �
�� � �� (2)

In Eq. (2), �� is

�
�� � �

�
�� � � 	 �� 	 �����

���������� , and �

is ������� �
��. By using Eq. (2), if a normalization-
transformed query window ��� �
� is in � �-match with
a normalization-transformed data window 	�� �
�, the
method regards the sequence 	 containing the window
	�� �
� as a candidate sequence. That is, it stores the
normalization-transformed data windows in the index, and
uses the new tolerance �� instead of the given tolerance �
when searching the index. The method by Loh et al. has
a serious problem that overall performance becomes much
worse if the query sequence length is two or more times
longer than the window size. It is because, as the query se-
quence length increases, the index search range � � becomes

much larger than ��
�
� used in FRM. To solve this search

range problem, Loh et al. have proposed the notion of
index interpolation, which constructs multiple indexes for
multiple window sizes and selects an appropriate index for
the given query sequence length. The index interpolation,
however, causes another critical problem of incurring index
overhead both in storage space and in update maintenance
due to use of multiple indexes. (Refer to [12] for the more
detailed motivation of the research.)

3 The Proposed Single Index Approach

In this section we adopt a single index approach [11] into
the normalization-transformed subsequence matching. The
single index approach has been proposed to solve the prob-
lem of index overhead in the moving average transform-
based subsequence matching. We exploit this single in-
dex concept for the normalization-transformedsubsequence
matching.

3.1 Inclusion-Normalization Transform and the
Proposed Method

We first formally define the notion of inclusion-
normalization transform.

Definition 1 The inclusion-normalization transformed se-
quence of 	�� � �� against 	�� �
� �� � �
 � �
�, denoted
by 	������� � ��, is defined as a new sequence whose entry

	���������� � � � �� is set to �����	��������
��������� . �

According to Definition 1, for a window 	�� � ��, the
inclusion-normalization transform uses the mean and the
standard deviation of 	�� �
� rather than those of 	�� � ��.
The notion of inclusion-normalization transform is based
on the observation that, for a window 	�� � �� and a sub-
sequence 	�� �
�, ��	�� �
�� and ��	�� �
�� would be
very similar to ��	�� � ��� and ��	�� � ���, respectively,
since all entries in 	�� � �� are also contained in 	�� �
�.
Analogously, two transformed windows 	������� � �� and

	��������� � �� will also have the similar entry values even
if 	�� �
� differs from 	��� �
��.

We now propose a new normalization-transformed sub-
sequence matching method, called FRM-NT(FRM that sup-
ports normalization transform)2, which is devised from
FRM by using the inclusion-normalization transform.
While FRM converts each sliding window of data se-
quences to a point in the index, FRM-NT converts each

2We can also devise new matching methods that apply the inclusion-
normalization transform to DualMatch [9] or GeneralMatch [10]. Accord-
ing to analysis, however, performance improvement of the methods is not
significant compared with FRM-NT. Therefore, we present only FRM-NT
that can be most easily derived from FRM.

window to an MBR that contains multiple points. That
is, for each data window, FRM-NT first generates mul-
tiple transformed windows by performing the inclusion-
normalization transform using every possible subsequence,
then maps each transformed window to a lower-dimensional
point, and finally constructs an MBR by containing all the
points. Thus, each window is mapped into an MBR rather
than a point, and the MBR is stored in the multidimensional
index.

To show correctness of FRM-NT, we first present two
lemmas. Lemma 1 shows the case where the subsequence
to be compared with query sequence includes only one dis-
joint window, and Lemma 2 the case where the subsequence
includes two or more disjoint windows.

Lemma 1 If a data subsequence	�� �
� includes a window
	�� � ��, and � is a query sequence, then the following
Eq. (3) holds:

��	�� �
�� �� � � ��
��	������� � ��� ���� �� � � �� �� ��� � � (3)

PROOF: Refer to the reference [12]. �

Lemma 2 If a data subsequence 	�� �
� includes � disjoint
windows, 	��	 � �� � ��� 	��� � �� � ��� 	 	 	 � 	����� �
�� � ��, of length �, and � is a query sequence, then the
following Eq. (4) holds:

����� � ��� 	� �
 ����

��� ������������� � �� � ��� 	����� � �� � � �� � ���
� ��

�
(4)

PROOF: Refer to the reference [12]. �

Lemma 1 guarantees that the candidate set consisting of the
subsequences 	�� �
� such that 	������� � �� and ��� � � �
� � � � � � �� are in �-match contains no false dismissal.
Also, Lemma 2 guarantees that the candidate set consist-
ing of 	�� �
� such that at least one of the window pairs
�	���������� � �� � ��� ������ � � � � � �� � ��� are in
��
�
�-match contains no false dismissal. (See Figures 2 and

3 in [12] for the more detailed explanation.)
We now explain correctness of FRM-NT. FRM-NT per-

forms the normalization-transformed subsequence match-
ing correctly based on the following Theorem 1.

Theorem 1 If � is in �-match with 	�� �
�, then at least
one �-th disjoint window of � is in ��

�
�-match with the

corresponding sliding window of 	�� �
�, where � � � � �,
and � � ����������. That is, the following Eq. (5) holds:

����� � ��� 	� �
 ����

��� ����������� �� � ��� � �� �� � ���
�� �
��
�

(5)

PROOF: According to Lemma 2, the following Eq. (6)
holds:

���� � ��� �� � � ����

���

��������
��� �
� � ��� ��
��� � � � � �
� � ��� � ��

�
(6)

Let �	 � �� �� � ���� 	 	 	 � and ���� � ����� ���, i.e.,
let ���� � �� �� � ���. Then, Eq. (6) can be represented
as Eq. (7):

���� � ��� �� � � ��
��

���

���������� �� � ��� � � � �� � ��� ���� � ��� � � � ����

� ��
�

(7)

According to the notation in Table 1,���������� � ��� is
denoted by ��. Thus, Eq. (7) is also represented as Eq. (5),
and this completes the proof. �
Theorem 1 guarantees correctness of FRM-NT. That
is, it guarantees that the candidate set consisting
of the subsequences 	�� �
� such that the disjoint
window �� and the corresponding sliding window
	�������� �� � ��� � �� �� � �� are in ��

�
�-match (i.e.,

satisfying the necessary condition of Eq. (5)) contains no
false dismissal.

3.2 Index Building and Subsequence Matching
Algorithms

In this subsection we present index building and subse-
quence matching algorithms of FRM-NT. Figure 1 shows
the index building algorithm of FRM-NT. In Step (1), we
divide a data sequence 	 into sliding windows of length
�. In Steps (2)
 (6), for each sliding window, we con-
struct an MBR and store the MBR into the multidimensional
index. First, in Step (3), we make a set of transformed
windows 	������� � �� from each sliding window 	�� � ��
by performing inclusion-normalization transform on every
possible subsequence 	�� �
�. (For the reason why we per-
form the inclusion-normalization transform for every pos-
sible position, refer to Figure 5 in [12].) Next, in Step (4),
we construct an � -dimensional MBR by using the lower-
dimensional transformation on the set of windows. Finally,
in Step (5), we store the MBR into the multidimensional
index with the starting offset of the corresponding sliding
window.

Like FRM, however, FRM-NT has a problem of gener-
ating too many MBRs to be stored in the index since it di-
vides data sequences into sliding windows. To solve this
problem, FRM-NT also constructs an MBR that contains
multiple MBRs corresponding to multiple sliding windows.
That is, in the index building algorithm, we first construct
an MBR that represents multiple consecutive sliding win-
dows, and then store the MBR with the starting offsets of
the first and the last windows into the index. For easy ex-
planation and understanding, however, we describe the al-
gorithm in Figure 1 as that FRM-NT stores an individual
MBR for each sliding window directly. (For the detailed
process of constructing the index, refer to Figure 6 in [12].)

After building the multidimensional index, we perform
the normalization-transformedsubsequence matching using
the algorithm presented in Figure 2. In Steps (1) and (2),

Procedure FRM-NT-BuildIndex(Data Sequence S, Window size ω)
(1) Divide S into sliding windows of length ω;
(2) for each sliding window S[a : b] do
(3) Make a set of inclusion-normalization transformed windows { : }[:]i jS a b
 for each possible query length and each possible position of S[i : j];
(4) Construct an f-dimensional MBR f-D MBR by using lower-dimensional transformations
 on a set of { : }[:]i jS a b ’s;
(5) Make a record <f-D MBR, offset=a>, and store it into the index;
(6) endfor

Figure 1. Index building algorithm of FRM-NT.

Procedure FRM-NT-SubsequenceMatching (Query Sequence Q, Window size ω)
(1) Make Q from Q by using the normalization transform;
(2) Divide Q into disjoint windows)1(piqi ≤≤ of length ω;
(3) for each disjoint window iq do
(4) Transform the window to an f-dimensional point by using the feature extraction function;
(5) Construct a range query using the point and pε ;
(6) Search the index and find the records of the form <f-D MBR, offset>;
(7) Include in the candidate set the subsequences S[i:j] for each possible position;
 // where ()i offset l k= + − ⋅ω , 1)(−+= QLenij , 0 1l≤ ≤ ω − , and ⎣ ⎦ 10 −ω≤≤ lenqk
(8) endfor
(9) Do the post-processing step;

Figure 2. Subsequence matching algorithm of FRM-NT.

for a given query sequence �, we obtain � disjoint win-
dows �� from the normalization-transformed sequence �.
In Steps (3)
 (8), for each window � �, we find candidate
subsequences by searching the index. First, in Step (4), we
transform the corresponding window to an � -dimensional
point using lower-dimensional transformation. Second, in
Step (5), we construct a range query using the point and
��
�
�. Third, in Step (6), we search the index using the

range query and find the MBRs that are in ��
�
�-match

with the point. Last, in Step (7), we obtain candidate subse-
quences using offset, which is stored in the record with the
MBR as the starting position of the corresponding sliding
window. After obtaining a candidate set, we finally select
only similar subsequences by discarding false alarms from
the candidate set in Step (9).

4 Performance Evaluation

4.1 Experimental Data and Environment

We have performed experiments using two types of data
sets. The first data set, a real stock data set used in ear-
lier works [4, 9, 10] for subsequence matching, consists of
329,112 entries. We call this data set STOCK-DATA. The
second data set, also used in the earlier works as a synthetic
data set, contains random walk data consisting of one mil-
lion entries: the first entry is set to 1.5, and subsequence
entries are obtained by adding a random value in the range
(-0.001,0.001) to the previous one. We call this data set

WALK-DATA.
We evaluate two methods: FRM-NT proposed in Sec-

tion 3 and the previous one by Loh et al. [8] (we simply call
it LKW by taking authors’ initials.). As the multidimen-
sional index, we use the R�-tree [2] for both methods. And,
we use 256
 1024 as the query sequence lengths to be
given, and accordingly, we set the minimum window size
of both methods to 256 [4]. Also, we use DFT(Discrete
Fourier Transform) [4, 7, 9] as the feature extraction func-
tion and use six features [4, 9, 10]. The hardware platform
is a PC equipped with an Intel Pentium IV 2.80GHz CPU,
512MB RAM, and a 70.0GB hard disk. The software plat-
form is GNU/Linux Version 2.6.6 operating system.

As the metric of efficiency, we measure the elapsed time
of each method. We generate query sequences from the
data sequence by taking subsequences of length ������
starting from random offsets [4, 10]. To avoid effects of
noise, we experiment with 10 different query sequences of
the same length and use the average as the result. As the
selectivity [4], we use �	�
 since lower selectivities will
be much more important than higher ones for very large
databases [8, 9].

4.2 Experimental Results

We have conducted two experiments: Experiment 1)
uses only one index, and Experiment 2) multiple indexes.

Experiment 1): Figure 3 shows the experimental results
when we use a single index for both methods. As depicted,

if the query sequence length is 256, i.e., if it equals to
the window size, LKW is slightly better than FRM-NT in
performance. It is because, while LKW uses the small-
est search range when the query sequence and the win-
dow have the same size, MBR sizes in FRM-NT are gen-
erally larger than those in LKW due to use of inclusion-
normalization transforms. For the cases where the query
sequence length is longer than 256, however, our FRM-NT
outperforms LKW. That reason is that, as we explained in
Section 3, as the query sequence length increases, the index
search range �� of LKW will be greater than � while that of
FRM-NT will be reduced to ��

�
�.

In summary, we say that LKW is optimized for a specific
query sequence length; in contrast, FRM-NT is evenly opti-
mized for query sequences of arbitrary length. Thus, LKW
shows the best performance when the query sequence and
the window have the same size, but it becomes worse as the
query sequence length increases compared with the window
size. In contrast, FRM-NT shows relatively better perfor-
mance than LKW in many cases where the query sequences
are longer than the window. In summary of experimental
results in Figure 3, FRM-NT improves performance by up
to 2.8 times for STOCK-DATA and by up to 1.4 times for
WALK-DATA compared with LKW.

Experiment 2): Figure 4 shows the results when we use
multiple indexes as in [8] rather than a single index. We
build three indexes for window sizes of 256, 512, and 1024.
As depicted, for the case where the query sequence length
is one of 256, 512, and 1024, i.e., where an index is built
for the length, LKW shows slightly better performance than
FRM-NT. It is because, as we explained in Experiment 1),
LKW shows the best performance when the query sequence
and the window have the same size. On the other hand, for
the case where the query sequence length is one of 384, 640,
768, and 896, i.e., where an index is not built for the length,
our FRM-NT shows better performance than LKW. It is
because FRM-NT is evenly optimized for every query se-
quence length as well as for the window size. Likewise, we
note that FRM-NT shows a comparable performance with
LKW even if we use multiple indexes rather than a single
index.

5 Conclusions

Normalization transform is known to be very useful for
finding the overall trend of time-series data since it enables
finding sequences with similar fluctuation patterns. In this
paper we use this normalization transform for the distortion-
free subsequence matching. Previous works with normal-
ization transform, however, have a critical problem of in-
curring index overhead both in storage space and in update
maintenance due to use of multiple indexes. To solve this

problem, we have presented the new notion of inclusion-
normalization transform and, based on the notion, proposed
a single index approach for the normalization transformed
subsequence matching. Using the single index approach,
we can reduce the storage space and the index maintenance
overhead.

The contribution of the paper can be summarized as fol-
lows. First, we have analyzed the problems of the previ-
ous work. Second, we have formally defined the inclusion-
normalization transform by generalizing the original defini-
tion of normalization transform. Third, we have presented
a related theorem to guarantee correctness of the inclusion-
normalization transform-based subsequence matching and
formally proved the theorem. Fourth, we have proposed
subsequence matching and index building algorithms to im-
plement the proposed method. Last, we have empirically
shown superiority of our method. Experimental results for
real stock data show that our method improves performance
by up to 2.8 times over the previous method.

References

[1] Agrawal, R., Faloutsos, C., and Swami, A., “Efficient
Similarity Search in Sequence Databases,” In Proc.
the 4th Int’l Conf. on Foundations of Data Organiza-
tion and Algorithms, pp. 69-84, Oct. 1993.

[2] Beckmann, N., Kriegel, H.-P., Schneider, R., and
Seeger, B., “The R�-tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles,” In Proc. Int’l
Conf. on Management of Data, ACM SIGMOD, pp.
322-331, May 1990.

[3] Chan, K.-P., Fu, A. W.-C., and Yu, C. T., “Haar
Wavelets for Efficient Similarity Search of Time-
Series: With and Without Time Warping,” IEEE
Trans. on Knowledge and Data Engineering, Vol. 15,
No. 3, pp. 686-705, Jan./Feb. 2003.

[4] Faloutsos, C., Ranganathan, M., and Manolopou-
los, Y., “Fast Subsequence Matching in Time-Series
Databases,” In Proc. Int’l Conf. on Management of
Data, ACM SIGMOD, pp. 419-429, May 1994.

[5] Keogh, E. J. et al., “LB Keogh Supports Exact In-
dexing of Shapes under Rotation Invariance with Ar-
bitrary Representations and Distance Measures,” In
Proc. Int’l Conf. on Very Large Data Bases, Seoul,
Korea, pp. 882-893, Sept. 2006.

[6] Kim, S.-W., Park, S., and Chu, W. W., “Efficient Pro-
cessing of Similarity Search Under Time Warping in
Sequence Databases: An Index-based Approach,” In-
formation Systems, Vol. 29, No. 5, pp. 405-420, July
2004.

256 512 768 1024
T

he
 e

la
ps

ed
 ti

m
e

(µ
se

c)
Query sequence length (Len(Q))

(a) Results for STOCK-DATA

Query sequence length (Len(Q))

(b) Results for WALK-DATA

256 512 768 1024
0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

LKW

FRM-NT

LKW

FRM-NT

Figure 3. Performance comparison of FRM-NT and LKW using a single index.

Query sequence length (Len(Q))

(a) Results for STOCK-DATA

Query sequence length (Len(Q))

(b) Results for WALK-DATA

T
he

 e
la

ps
ed

 ti
m

e
(µ

se
c)

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

256 384 512 640 768 896 1024
0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

256 384 512 640 768 896 1024

LKW

FRM-NT

LKW

FRM-NT

Figure 4. Performance comparison of FRM-NT and LKW using multiple indexes.

[7] Lim, S.-H., Park, H.-J., and Kim, S.-W., “Using Mul-
tiple Indexes for Efficient Subsequence Matching in
Time-Series Databases,” In Proc. of the 11th Int’l
Conf. on Database Systems for Advanced Applica-
tions, pp. 65-79, Apr. 2006.

[8] Loh, W.-K., Kim, S.-W., and Whang, K.-Y., “A Subse-
quence Matching Algorithm that Supports Normaliza-
tion Transform in Time-Series Databases,” Data Min-
ing and Knowledge Discovery, Vol. 9, No. 1, pp. 5-28,
July 2004.

[9] Moon, Y.-S., Whang, K.-Y., and Loh, W.-K.,
“Duality-Based Subsequence Matching in Time-
Series Databases,” In Proc. the 17th Int’l Conf. on
Data Engineering (ICDE), IEEE, pp. 263-272, April
2001.

[10] Moon, Y.-S., Whang, K.-Y., and Han, W.-S., “General
Match: A Subsequence Matching Method in Time-
Series Databases Based on Generalized Windows,” In
Proc. Int’l Conf. on Management of Data, ACM SIG-
MOD, pp. 382-393, June 2002.

[11] Moon, Y.-S. and Kim, J., “A Single Index Approach
for Time-Series Subsequence Matching that Supports

Moving Average Transform of Arbitrary Order,” in
Proc. of the 10th Pacific-Asia Conf. on Knowledge
Discovery and Data Mining (PAKDD), pp. 739-749,
Apr. 2006.

[12] Moon, Y.-S. and Kim, J., “Fast Normalization-
Transformed Subsequence Matching in Time-Series
Databases,” Technical Report, Kangwon Na-
tional University, July 2006 (Also available at
http://cs.kangwon.ac.kr/
ysmoon/papers/norm-
trans.pdf).

[13] Rafiei, D. and Mendelzon, A. O., “Querying Time Se-
ries Data Based on Similarity,” IEEE Trans. on Knowl-
edge and Data Engineering, Vol. 12, No. 5, pp. 675-
693, Sept./Oct. 2000.

[14] Wei, L., Keogh, E., Van Herle, H., and Mafra-
Neto, A., “Atomic Wedgie: Efficient Query Filtering
for Streaming Time Series,” In Proc. of the 5th IEEE
Int’l Conf. on Data Mining, pp. 490-497, Nov. 2005.

[15] Yi, B.-K., Jagadish, H. V., and Faloutsos, C., “Effi-
cient Retrieval of Similar Time Sequences Under Time
Warping,” In Proc. the 14th Int’l Conf. on Data Engi-
neering (ICDE), Orlando, Florida, pp. 201-208, Feb.
1998.

