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Abstract 
Searching a database of 3D objects for objects that 

are similar to a given 3D search object is an important 

task that arises in a number of database applications for 

example, in Medicine and CAD fields. Most of the existing 

similarity models are based on global features of 3D 

objects. Developing a feature set or a feature vector of 3D 

object using their partial features is challenging. In the 

present paper, we introduce a novel segment weight 

vector to matching 3D objects rapidly. We also describe a 

partial and geometrical similarity based solution to the 

problem of searching for similar 3D objects. As the first 

step, we split a 3D object into parts according to its 

topology. Next, we introduce a new method to extract the 

thickness feature of each part and generate the feature as 

a feature vector of the 3D object. We also propose a novel 

searching algorithm using the newly introduced feature 

vector. Furthermore, we present a new solution for 

improving the accuracy of the similarity queries. Finally, 

we present a performance evaluation of our stratagem. 

The result indicates that the proposed approach offers a 

significant performance improvement over the existing 

approach. Since the proposed method is based on partial 

features, it is particularly suited to searching objects 

having distinct part structures and is invariant to part 

architecture. 

 

1. Introduction 
 

Since 3D models are increasingly created and designed 

using computer graphics, computer vision, CAD medical 

imaging, and a variety of other applications, a large 

number of 3D models are being shared and offered on the 

Web. Large databases of 3D models, such as the 

Princeton Shape Benchmark Database [10], the 3D Cafe 

repository [21], and Aim@Shape network [13], are now 

publicly available. These datasets are made up of 

contributions from the CAD community, computer 

graphic artists, and the scientific visualization community. 

The problem of searching for a specific shape in a large 

database of 3D models is an important area of research. 

Text descriptors associated with 3D shapes can be used to 

drive the search process [20], as is the case for 2D images 

[23]. However, text descriptions may not be available and 

may not apply for part-matching or similarity-based 

matching. Several content-based 3D shape retrieval 

algorithms have been proposed [3] [4] [5] [8] [19].  

For the purpose of content-based 3D object retrieval, 

various features of 3D objects have been proposed [1] [5] 

[8] [19] [9]. However, these features are global features. 

That is, they describe the geometry or topology 

information of a 3D object using one feature. In addition, 

it is difficult to effectively implement these features on 

relational databases because they include topologic 

information. An efficient feature is proposed in [6] that 

can also be used in partial similarity matching of shapes. 

However, an efficient method by which to retrieve 

complex shapes by their partial similarity is not described 

in [6] for a 3D shape database. In addition, the shock 

graph comparison based retrieval method described in a 

previous paper [7] is based only on the topologic 

information of the shape. An approach based on a new 

geometric index structure is suggested in [3]. The basic 

idea of this solution is to use the concept of hierarchical 

approximations of the 3D objects to speed up the search 

process. However, this is still based on global features. An 

efficient geometrical and partial similarity based method 

is needed to retrieve 3D objects.  
In the present paper, we propose a novel feature vector 

of a 3D object. This feature vector is based on geometrical 

information rather than on topological information alone. 

The vector is herein referred to as the Segment Weight 

Vector (SWV). The SWV is more effective and flexible 

than the Curve-Skeleton Thickness Histogram (CSTH) [6] 

on partially based object matching. Furthermore, we 

propose a novel method to search similar objects from 3D 

object database using the feature. We refine the result with 

a filter using the Segment Thickness Histogram (STH) of 

the curve-skeleton. In our proposal, a number of similar 

3D objects are retrieved from a 3D object model database 

if the volume features of the parts of the key object are 

similar to any part of the potential candidate 3D objects. 

The similar objects are inserted into the candidate pool. 

As an accuracy improvement step, the 3D objects will be 

removed from the candidate pool if the CSTH of the 

processing part of the key object is not similar to any 

CSTHs of the potential candidate object. Therefore, the 



proposed method can also be easily implemented on other 

multi-branch complex graph matching applications if there 

are different heavy values on the curves.  

The remainder of the present paper is organized as 

follows. Section 2 provides an overview of research 

related to skeleton generation and content-based retrieval. 

In Section 3, we describe a feature vector (SWV) of 3D 

objects based on the topology of their curve-skeletons and 

partial geometries. In addition, we describe the Segment 

Thickness Histogram (STH) of the curve-skeleton. In 

Section 4, we describe the novel algorithm and a similar 

3D object retrieval method based on the SWVs and STHs, 

as mentioned in Section 3, of the 3D object. The 

performance test results of different strategies and a 

discussion thereof are presented in Section 5. Finally, in 

Section 6, we conclude the paper and present ideas for 

future study. 

 

2. Related work 
Research on skeleton detection and 3D object matching 

are related to the present paper. 

A number of different approaches have been proposed 

for the matching problem. Using a simplified description 

of a 3D model, usually in one or two dimensions (also 

known as a shape signature), the 3D matching can be 

implemented by comparing these different signatures. The 

dimensional reduction and the simple nature of these 

shape descriptors make them ideal for applications 

involving searching in large databases of 3D models. 

Osada et al. in [19] proposed the use of a shape 

distribution, sampled from one of many shape functions, 

as the shape signature. Among the shape functions, the 

distance between two random points on the surface proved 

to be the most effective for retrieving similar shapes. In 

[24], a shape descriptor based on 2D views (images 

rendered from uniformly sampled positions on the 

viewing sphere), called the Light Field Descriptor, 

performed better than descriptors that use the 3D 

properties of the object. In [14], Kazhdan et al. propose a 

shape description based on a spherical harmonic 

representation. Kriegel et al. [1] present an approach for 

describing voxelized objects. The cover sequence model 

approximates a voxelized 3D object using a sequence of 

grid primitives (called covers), which are basically large 

parallelepipeds. Lau et al. [2] surveyed some 

representative research on 3D model retrieval, focusing 

their analysis on feature matching. Existing methods are 

divided into three groups: geometry-based, frequency-

based, and topology-based. Unfortunately, these previous 

methods cannot deal with partial matching. Another 

popular approach to shape analysis and matching is based 

on comparing graph representations of shape. Nicu et al. 

[9] developed a many-to-many matching algorithm to 

compute shape similarity on the topologic information of 

the curve-skeleton. Sundar et al. [5] developed a shape 

retrieval system based on the skeleton graph oh the shape. 

These previous methods focus only on the topologic 

information of the shape. Unfortunately, the most 

important shape information (i.e., geometric information) 

is neglected. Moreover, using a graph to match shapes is 

more costly. Lu et al. [6] proposed a novel shape feature 

of a 3D model, called the Curve-Skeleton Thickness 

Histogram (CSTH). The CSTH is based on the geometric 

information of the shape but only describes the matching 

algorithm of one segment on the curve-skeleton of a shape 

model. However, there was no discussion as to how to 

match two 3D models that have multiple segments on their 

curve-skeleton. 

In [5] [9], curve-skeletons are a 1D subset of the 

medial surface of a 3D object and have recently been used 

in shape similarity matching. A number of algorithms and 

applications based on curve-skeletons have developed in 

the last decade. Topological thinning methods [15] can 

directly produce a curve-skeleton that stores the topologic 

information of objects. Unfortunately, these algorithms 

are resolution-dependent and lose the geometric 

information of objects. Distance transform methods [12] 

use the distance field of volume data to extract the 

skeleton. Unfortunately, these methods do not produce a 

1D representation directly. Using these methods requires 

some significant post-processing. However, some 

geometric information on the extracted voxel is 

maintained.  

Various types of fields generated by functions are used 

to extract curve-skeletons. They can produce nice curves 

on medial sheets. A potential field function in which the 

potential at a point interior to the object is determined as a 

sum of potentials generated by point charges on the 

boundary of the object. Such functions include the 

electrostatic field function [16] and the visible repulsive 

force function [17]. The skeleton points are found by 

determining the “sinks” of the field and connecting them 

using a force following algorithm [11] or minimizing the 

energy of an active contour [18], which are used to 

generate an initial skeleton in the present paper. 

 

3. Feature extraction 
In this section, we briefly describe the method used to 

build the thickness of a curve-skeleton from 3D polygonal 

models. For details, please refer to Reference [6]. We also 

introduce a novel method by which to break a curve-

skeleton into independent parts, called segments, based on 

by topology. In addition, we describe in detail the 

normalization of the curve-skeleton thickness histogram of 

a single segment.  

3.1   Skeleton extraction 
A number of methods of skeleton extraction have been 

reported [11] [12]. The electrostatic field function [11] 



can extract well-behaved curves on medial sheets. Even 

though the result is connected, the extracted curves are 

divided into a number of segments based on electrostatic 

concentration. However, we need to split the skeleton into 

parts based on topology rather than on electrostatic 

concentration. In Reference [6], the initial curve-skeleton 

based on the method in [11] is first extracted. The 

distance transform (DT) algorithm [12] was then used to 

compute the DT of all voxels on the extracted curve-

skeleton (Fig. 2). Finally, in Reference [6], all of the 

curve-skeletons of the object were assumed to be 

connected and to have no branches. Then, a similarity 

computation method of 3D object models based on the 

curve-skeletons thickness distribution of the entire object 

model was introduced. 

 
 

Fig. 1  Three-dimensional model used to extract the skeleton. 

 

 
Fig. 2  Curve-skeleton with thickness of the 3D model in Fig. 1. 

  

 
Fig. 3  Segments of the curve-skeleton after splitting the curve-skeleton 

in Fig. 2. 

 

Generally, there must be several branches on the curve-

skeleton of a complex object (Fig. 1). First, we merge all 

of the parts separated from the curve-skeleton into a 

continuous curve. The continuous curve is then broken 

into parts according to its topology (Fig. 3). 

3.2 Segment Thickness Histogram 
We computed the distance transform (DT) of all voxels 

on the segments mentioned in Section 3.1. We generated 

the thickness distribution histogram (Fig. 7) from all of 

the segments of the curve-skeleton that were joined 

together based on topological and curvature information. 

As partial features of objects, the thickness distribution 

histogram is used for partial matching.  

3.3 Segment Weight Vector 
Extracting features to represent a part of a 3D model for 

similarity measurement has been a significant challenge. 

We herein propose a new partial feature based 3D object 

feature. The partial feature of each 3D object is defined by 

the volume size of its segment thickness histogram. We 

compute the weight value of all of the parts, which 

correspond to the segments of the curve-skeleton of a 3D 

object. Furthermore, we use these weight values to 

assemble a vector called the SWV (as mentioned in 

Section 1) to represent the global feature of the 3D model.  

In order to generate the SWV, we first compute the 

volume size of each part of each 3D object using the 

following formula: 

∫=

x

xi Tw                                                 

where iw  is the weight of a segment on the curve-

skeleton, which represents a geometrical feature of the 

part of the corresponding 3D object to which the segment 

belongs, and Tx represents the thickness of a segment at 

position x, which indicates the position of a voxel on the 

segment. 

Second, in order to obtain a SWV representation that is 

invariant with the order of the 3D model parts for 

similarity matching, a sorting step is needed. We sort the 

weight of parts of a 3D object by descent. The sorted 

values make up the SWV of a 3D object.  

SWV = ),,,( 110 −nwww L  

where iw  represents the weight of the i-th segment, and 

110 −
≥≥≥ nwww L .  

Therefore, in order to obtain an SWV that is invariant 

with the scale of a 3D model for similarity matching, a 

normalization step is needed. We normalize the vector by 

its maximum value, as follows:  

 0/ www ii = , 

where i represents the index of iw  in a sorted SWV, and 

110 −
≥≥≥ nwww L , ]1,1[ −∈ ni . The normalized 

and sorted SWV is denoted as SWV , 

),,,,1( 121 −= nwwwSWV L .  

 

3.4 Normalization of the segment thickness  
In order to obtain the Segment Thickness Histogram 

(STH) representation that is invariant with the scale of a 

3D model for similarity measurement, a normalization 

step is needed. The horizontal axis of the distribution 

should be normalized with a fixed value. Moreover, the 

vertical axis should be zoomed by a ratio that is equal to 

the zoom ratio of horizontal normalization. Using the 

normalization strategy, we use the variation of each STH 



of the object as a feature of the object. Furthermore, in 

this method, we treat the proportion of the length of a 

segment and the thickness distribution along with the 

segment as a component of the feature. 

 

4. Searching algorithm 
 

After the SWVs of the 3D models are constructed, we 

need a dissimilarity measure in order to compare two 3D 

models. In this section, we describe how to compare two 

SWVs and how to retrieve 3D objects from a database by 

their partial geometrical features. 

In order to make the bin-to-bin comparison flexible, 

the Warp Distance (WD) [25] is proposed in order to 

compare time series, and the WD is then adapted in order 

to compare metric histograms. If two 3D objects are 

similar, all of their correspondent parts must be similar. 

Therefore, the numbers of elements of their SWVs must 

be the same. However, the WD is obtained by a procedure 

in which each point from a sequence is compared not only 

with its correspondent. Therefore, in our solution, we 

cannot use the WD to compare different SWVs that 

belong to different 3D objects. 

In our implementation, we have performed an 

experiment using a simple dissimilarity measure based on 

the LN norms function with n = 2. We used the following 

formula: 

             

,               (1) 

 

where Xi and Yi represent the i-th elements in two SWVs. 

Our main idea is based on the fact that two objects are 

similar if all of their corresponding parts are geometrically 

similar. Thus, if the volumes and thicknesses the 

histograms of two 3D objects are similar for each segment 

of their curve-skeletons, then the two 3D objects may be 

similar. 

However, the similar segment thickness histograms 

retrieval is a multidimensional database problem. We 

developed a new algorithm to improve the retrieval 

performance. First, we find 3D models from the database 

by matching the SWVs. Therefore, we need to use a 

similar object retrieval strategy that uses STHs to improve 

the retrieval accuracy.  

In order to retrieve the most similar objects, we first 

sort the 3D objects by their SWV similarity. In our 

implementation, we retrieve only the 3D objects of which 

the total numbers of segments (number of elements in 

their SWVs) are the same. We then sort the retrieved 

result set based on the similarity of their SWVs and select 

only the top m objects for the next step.  

Second, we use STHs of the selected 3D objects to 

improve the accuracy of the retrievals. We retrieve the 

most similar n segments from the selected 3D object set. 

This 3D object set includes only the m objects output in 

the first step. In addition, each of the n retrieved segments 

belongs to different 3D objects. The retrieved result is 

shown in Table 1. In the table, KS indicates the key object 

with an m-segment curve-skeleton, and KS.SG1 is the 

segment that has the largest STH volume. In addition, 

CS21.SGx indicates that the segment SGx is on the curve-

skeleton of the CS21 object. Finally, the most similar 3D 

objects are found from Table 1 using SQL. The 3D 

objects having the largest number of similar segments are 

reported as the result of 3D object retrieval. In addition, 

the final step is to find the 3D objects that they have the 

most amounts in the candidate pool of Table 1. 

 
Table 1  Candidate pool of the key object. 

Key Candidate pool 

KS.SG1 CS11.SGx ⋯  CS1n.SGx 

KS.SG2 CS21.SGx ⋯  CS2n.SGx 

⋮  ⋮  ⋮  ⋮  

KS.SGm CSm1.SGx ⋯  CSmn.SGx 

 

 

5. Experiment and discussion 
 

In order to test the proposed feasibility of the similar 

object retrieval strategy, we implement the present 

algorithms on a Linux system by C++ and PostgreSQL. 

We set the resolution of the volume data as 

200200200 ××  in the volume voxelization procedure. 

We used the Princeton shape database [10] as the test data 

in the present study. We found that the proposed method 

works well for similar object retrieval based on the 

geometrical feature of partial bodies. 

Although there are 1,814 3D objects in the Princeton 

shape database, we only generated 1,453 curve-skeletons 

of 1,453 3D models from the database because the 

skeleton-making algorithm cannot generate a curve-

skeleton from some 3D models. In addition, the generated 

1,453 curve-skeletons include 51,952 segments in our test 

database. 

The key object (Fig. 4) of test has six segments on its 

curve-skeleton (Fig. 5). These segments belong to a head 

(number of segments: 4), a trunk of a body (number of 

segments: 5), and four limbs (numbers of segments: 0, 1, 2, 

and 3). Since each segment has its own thickness 

histogram, the key object has six independent thickness 

histograms (Fig. 7).  
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Fig. 4  Key model used to search the 3D model database. 

 

 
Fig. 5  Segment number of the curve-skeleton of the key model in Fig. 4. 

 

 
Fig. 6  Curve-skeleton with thickness of the key model in Fig. 4. 

 

 
Fig.  7 Thickness distribution graph on the segments of the curve-

skeleton of the key model in Fig. 4. 

 

In order to test the feasibility of the similar object 

retrieval strategy proposed herein, we implement the 

proposed algorithms in two ways.  

First, we test the similar object retrieval strategy only by 

STHs. The results are shown in Fig. 8. In addition, in 

order to find no more than 30 objects using a segment of a 

key object (Fig. 4), we set the parameter n (number of 

maximum retrieval results) as 30 for the experiments. Our 

filtering program retrieves 30 objects by each STH of the 

key object and then inserts these objects into the 

temporary table. In order to find the objects of which the 

STHs match the key object for the head, the trunk of the 

body, and the four limbs, we need to find the best objects 

from each result set of the six parts. We obtain eighteen 

objects in which each of the six key parts has a matching 

part. Figure 8 shows a number of result objects of the 

object retrieval test and reveals that the proposed method 

can find similar objects and retrieve the models that have 

parts that are similar to the key object (e.g., result 7 in Fig. 

8). The part of the tail of result 7 does not have a part that 

is similar to the key object, and therefore cannot be 

reported based on global features. 

Fig. 8  Results of retrieval by the dissimilarity of the Segment Thickness 

Histograms only. 

 

We test the similar object retrieval by partial geometry. 

In addition, we retrieve 3D objects from a database using 

their SWV similarity. Furthermore, we use the STH 

similarity to improve the retrieval accuracy. The results 

retrieved by different keys are shown in Figs. 9 and 10. 

Finally, we also compare the retrieval performance of 

the two methods mentioned above. We test the retrieval 

performance by the different key objects (m221, m202, 

m213, m224, m233, m258 in the Princeton shape 

database). The result, shown in Fig. 11, indicates that the 

second method can be used to more quickly obtain the 

result set. In addition, the second method can retrieve a 

more accurate result set from the test database. 
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Fig. 9  Results of retrieval by the dissimilarity of Segment Weight 

Vector initially. 
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Fig. 10  Results of retrieval by the dissimilarity of Segment Weight 

Vector initially. 

 
Fig. 11  Retrieval performance comparison of the two methods 

mentioned above. 

 

 

6. Conclusions and future studies 
 

The 3D object retrieval method proposed in the present 

paper is based on partial geometry similarity between 3D 

objects. First, the proposed method extracts a curve-

skeleton with thickness. Second, we compute the 

dissimilarity of the SWV (mentioned in Section 1) and 

propose a novel 3D object retrieval strategy using the 

computed dissimilarity. Third, we compute the 

dissimilarity of the Segment Thickness Histograms 

(STHs) of each part with respect to the objects. Finally, 
we use the dissimilarity of STHs to improve the accuracy 

of the retrieval. It is possible to effectively retrieve 3D 

models by partial similarity in the present experiments.  

Since these SWVs and STHs are extracted from 3D 

objects using the geometrical information of a 3D object, 

the 3D objects can be compared based on geometrical 

information rather than on topologic information alone. 

Since each of the elements of the SWV and the STH are a 

partial feature of a 3D object, both the SWV and the STH 

can compare two 3D objects based on their partial 

features, rather than on their global features alone. Good 

efficiency and good results were obtained in the present 

experiments using the proposed method.  

In the future, we intend to add the thickness ratio on 

the connected parts as a feature of objects to filter out 

models, as shown by results 7, 16, 17, and 18 in Fig. 8 and 

result 5 in Fig. 9. In addition, we intend to develop an 

algorithm that efficiently searches 3D models from 2D 

drawings. 
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