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Abstract: Handling with large amount of data is common now. Employing extendible array to deal with increasing 
data is really effective. But in the conventional extendible arrays all of the operations such as extension and reduction 
can only occur to the surroundings of the array. This property limits the application of extendible arrays. So we 
proposed our flexibly resizable multidimensional arrays which can be inserted or deleted even in the midst of the array. 
In this paper we will propose a sharing scheme of resizable multidimensional arrays in a distributed environment 
which means the sharing of server side array by clients. 
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1. Introduction 

  Current distributed systems have to efficiently cope 
with many forms of dynamicity and be able to provide 
their service despite frequently structural changes in the 
data handled in the system. Things become much more 
complex when dynamicity becomes part of picture.  
Extendible arrays is very useful in handling this kind of 
dynamicity. They can extend or reduce without 
reorganizing existing array data.  

But the current extendible arrays scheme can only 
extend or reduce at the surroundings of an array. We have 
proposed flexibly resizable multidimensional array 
scheme in which we can insert and delete subarrays even 
in the midst of the arrays. The scheme will greatly enlarge 
the application of the extendible arrays.  In this research, 
with the objective of utilizing our flexibly resizable 
multidimensional arrays in a distributed environment, a 
sharing scheme with employing flexibly resizable 
multidimensional arrays between client and server is 
proposed and described. 

 The rest of the paper is organized as follows: Section 

2 presents the background of our research, Section 3 

describes flexibly resizable multidimensional arrays, 

Section 4 describes the simple sharing, Section 5 

describes the proposed sharing scheme, Section 6 shows 

evaluation of the proposed sharing scheme on space and 

time costs, and Section 7 summarizes some conclusions.   

 
2. Extendible Arrays 

   We employed multidimensional arrays originally for 
its fast accessing speed by fixing size in each dimension. 
But they cannot be dynamically extended or reduced 

unless we reorganize all the data which have been stored 
before. In order to solve these shortcomings we employed 
extendible arrays [4]-[6] which can be extended or 
reduced without any relocation of existing data. A n 
dimensional extendible array has a history counter h and 
three kinds of auxiliary tables for each dimension.  See 
Fig.1. These tables are history table Hi, address table Ai 
and coefficient vector table Ci  for each dimension    
i(1 ≤ i ≤ n). Hi memorizes the extension history of 
subarrays, Ai memorizes the first address of subarrays, Ci 
memorizes the coefficients of the addressing function of 
each subarray. For an extendible arrays of size        
[s1, s2 ,…, sn], when making an extension along 
dimension k, the contiguous storage of size       
[s1, s2 ,…, sk-1, sk+1 ,…, sn] will be dynamically 
allocated on the second storage. Then the history counter 
will be incremented by one and the value will be recorded 
in the corresponding Hi, the first address of this extended 
subarray is stored in the corresponding Ai .   Note that an 
extended subarray is one to one corresponding with its 
history value. As is well known that the address of 
element <i1, i2 ,…, in> in the usual fixed size 
multidimensional array was computed using addressing 
function like: 
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Here <s2s3…sn , s3s4…sn  ,…, sn> is called a 
coefficient vector of the subarray. 
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Consider the element <3, 3> in Fig.1 as an example. 

The address computation procedures are the followings. 
Compare the history value, H1[3] = 7 and H2[3] = 5. 
Since H1[3] = 7 > H2[3] = 5， the element belongs to the 
subarray which occupies the address from 13 to 17 and 
the offset from the first address of the subarray is 3, so 
we can finally get the address of <3, 3> to be 16. Note 
that the element address can be computed out by 
employing some small auxiliary tables. 

 
3. Resizable Multidimensional Arrays 

We have proposed resizable multidimensional arrays 
[8], in which subarrays can be freely inserted or deleted 
even in the midst of the array. See Fig.2 and Fig.3. 
However, such insertion or deletion would influence the 
logical location of other elements such as element (A) in 
Fig.2 and Fig.3. But their physical locations remain in the 
same place. Therefore the offset computation by the 
addressing function which has been described in Section 2 
cannot be applied here.  

Let e be an element to be accessed and its coordinate 

be <i1, i2 ,…, in>. The subarray including e is called as 
the principal subarray of e.  Let k be the dimension to 
which this subarray belongs. Each subarray corresponding 

to the subscript ip (p≠k) that belongs to dimension p is 
called as a subordinate subarray of e. It should be noted 
that the dimensions for which the compensation is 
necessary are those other than k.  

 In order to compensate, besides the three kinds of 
auxiliary tables mentioned in Section 2, we employed the 
insertion and deletion bitmap with the set of pairs 
<history value, bit sequence>, where each history value in 

this set is used for selecting the bit sequence to be used 
for calculating the extension or reduction compensation. 
An additional auxiliary table called revised subscript 
table is added to map the subscripts of the logical layout 
to the compensatory layout. See Fig.2 and Fig.3. The 
compensation value kδ  is: 

 

kδ  = reduction( oncompensati −)value   
                extension( oncompensati )value  

 
And then make compensation to the coordinate     

<i1, i2 ,…, in> as i’k  = ik＋δk for each dimension     
k(1 ≤ k ≤ n). 
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The insertion bitmap of Fig.2 can be seen in (a) of Fig.4. 
The deletion bitmap of Fig.3 can be seen in (b) of Fig.4 

Here for the sake of paper size, we ignore the detailed 
compensation procedures. Interested reader should 
consult [8] for more details. 

 
4. Simple Sharing Scheme 

In this section, we will give an outline of sharing in a 

Fig.1 Extendible Multidimensional Arrays 

Fig.2 Insert extension 

Fig.3 Delete reduction 

Fig.4 Insertion and deletion bitmap 

(a)Insertion bitmap of Fig.2 

Dimension 1 

(b) Deletion bitmap of Fig.3 

Dimension 2 



 

 

distributed environment which means a part of or all of 
server can be shared by many clients [7]. In sharing there 
are two kinds of arrays: 

(a) host array: the shared extendible array stored in 
server side.  

(b) client array: the extendible array stored in client 
side that shares the host array. 
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Let A be the host array stored at the server side. 
Assume that B is an client array at a client side sharing 
the portion of A from the subscript lk to uk  of dimension 
k(1 ≤ k ≤ n). See Fig.5. In order to make B work as an 
extendible array we need to prepare the history table and 
address table for each dimension k of B. Let A

kH  and 
A
kL  denote the history table and address table of A in host 

array. B
kH  and B

kL  denote those tables of B in the client 
array. B

kH  and B
kL  can be obtained by copying the 

corresponding portion of the host array. After initial 
sharing of the host array, local extensions at the 
surroundings can be performed in client array. But this 
simple kind of sharing suffers from the following two 
problems: 

(1) Only the contiguous host array area on the server 
can be shared by client.  

(2) Once the initial sharing parts on the host array have 
been settled down, the local extension or newly 
dynamically shared subarray of the host array can only be 
handled at the surroundings of client array. 

 

5. Flexible Sharing Scheme 
In order to solve the two problems described in the 

previous section, the concept of flexibly resizable 
multidimensional arrays [8] will be employed for sharing 
in a distributed environment.  There are two kinds of 
sharing.  

(a) Initial sharing. 

Random noncontiguous subarrays of host array can be 
shared by client. This solves problem (1) in Section 4. 
See Fig.6. 

(b) Dynamic sharing. 
After initial sharing, other unshared parts of host 

array can be loaded into sharing and logically be 
inserted into client array at any position, invoking to the 
capability of flexibly resizable multidimensional arrays 
described in Section 3. This will solve problem (2) in 
Section 4. See Fig.10. 

Although the flexible sharing scheme solves the two 
problems mentioned before, the sharing algorithm will 
cause the similar anomalies which have been mentioned 
in Section 3 to elements of the client array. 
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To exemplify, in Fig.6 element <1, 5> in host array 
exists in the principal subarray S of history value 
9(dimension 2, subscript 5). The element exists at the 
offset 1 of S.  So, the element address is computed as 
40+1=41.  After the flexible sharing, the logical location 

of the elements becomes <0, 1>in Fig.6 (b).  The 
element exists at the offset 0 of S.  So, the address is 
computed as 40+0 = 40.  Such kind of anomaly should be 
reconciled to get the correct physical location. That is an 
efficient mapping mechanism to convert a user specified 
coordinate of an array element (i.e. tuple of subscripts) 
into its correct physical location.  

5.1 Layout of the client array 
There are three kinds of subarrays existed in client 

side.  
(a) shared subarray, which is caused by sharing of the 

host array and logically loaded into the client array.  
(b) local subarray, which is caused by local extension 

Fig.5 Simple sharing scheme 

Fig.6 Flexible sharing scheme  

(a) Host array (b) Client array 



 

 

and stored in the client side. 
(c) complementary subarray, which is caused by 

sharing and stored in client side. Shared subarray will be 
handled as a local insertion and continues storage of size 

[s1,  s2 ,…,  s k-1,  sk+1 ,…, sn] will be sequentially 
allocated in client side. But the size of shared subarray is 
smaller than the size of newly allocated subarray. In order 
to make it logically work as a flexibly resizable 
multidimensional arrays. The complementary subarray 
will be created. Its size equals to total size of newly 
allocated subarray subtracts the size of shared subarray. 
Like the subarray of history 22 (dimension 1, subscript 5) 
which not including the subarray with horizontal lines. 

(See C-C auxiliary tables ⒶⒷⒸ  of Fig.10). Note that 
only contiguous storage size of complementary subarray 
will be allocated in client storage. 

So there are three kinds of compensation algorithms for 
calculating the address of an element depending on the 
kind of subarray it belongs to. Note that all the address 
compensation is done at the client side. 

 
There are two sets of auxiliary tables in a client array. 

(a) C - S auxiliary tables: The tables are for the 
shared subarrays. The portion of client side subarrays are 

all set as 0. See the tables of ⓐⓑⓒ  in Fig.6 (b) and 
Fig.10. 

(b) C - S auxiliary tables: The tables are for the 
client subarrays and complementary subarrays. Except the 
revised subscript table, the portion of shared subarrays 

are all set as 0. See the tables ⒶⒷⒸ  in Fig.6 (b) and 
Fig.10. 

 

5.2 Compensatory data structures 
Two extra kinds of bitmap are introduced for offset 

compensation. One is S-bitmap which records the 
situation of interleaves in the host array. That is, the 
corresponding bits of shared subarray in S-bitmap will be 
set as 1 while bits of unshared host subarray will be set as 
0. See Fig.7. Another is the C-bitmap which is used for 
reflecting the interleaved situation of shared subarrays 
and client side locally extended subarrays. Namely, the 
corresponding bits of shared subarray in C-bitmap will be 
set as 1 while client side locally extended subarrays will 
be set as 0. See Fig.8. 
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5.3 Address computation procedures 

(1) Check the position of the element.  
The C-bitmap will be inspected. By searching the bits 

corresponding to coordinate of element in each dimension, 
the position of element can be determined. If all of the 
corresponding bits are 1, the element belongs to a shared 
subarray. If all of the bits are 0, the element belongs to a 
local subarray. If all of bits are composed by 0 and 1, it 
belongs to a complementary subarray. 

(2) Determine the principal subarray of the element. 
(a)The element belongs to a shared subarray.  
The C-S auxiliary tables will be selected. See the 

element <5, 1> and ⓐⓑⓒ  in Fig.10. 
(b)The element belongs to a local subarray. 
The C-C auxiliary tables will be selected. See the 

element <6, 5> and ⒶⒷⒸ  in Fig.10. 
(c)The element belongs to a complementary subarray. 
The C-C auxiliary tables will be selected. See the 

element <5, 5> and ⒶⒷⒸ  in Fig.10. 
By comparing corresponding history table value of 

each dimension, the principal subarray of dimension k  
will be determined. The compensation is needed for the 
dimensions other than k. 

(3) Do compensation and compute out the address of 
elements. There are 3 cases: 

(a) The element belongs to a shared subarray. 
The compensation value kλ  is calculated as: 

 

kλ sharing(= oncompensati −)value  

inverse( oncompensati −)value  
            (interleave oncompensati )value  
 

Here sharing compensation value is computed by 
inspecting S-bitmap. The value is the total number of 
unset bits. The number is counted up to corresponding 
bit of the element coordinate in dimension k. Inverse 
compensation value is computed by inspecting C-S 
revised subscript table. (See table ⓒ  in Fig.10) The 
value is the number of shared subarray which its C-S 
revised subscript value is bigger than the C-S revised 
subscript value of element in dimension k. Interleave 

Fig.7 S-bitmap of Fig.5  

Fig.8 C-bitmap of Fig.5 



 

 

compensation value is computed by inspecting 
C-bitmap, the value is the total number of unset bits. 
The number is counted up to the corresponding bit of 
element coordinate in dimension k. The compensated 
coordinate < i’1, i’2 ,..., i’n> of e will be computed as  
i’k = ik ＋λk for each dimension k(1 ≤ k ≤ n). See 
element <5, 1> in Fig.10. 

(b) The element belongs to a local subarray. 
The compensation value kδ  is computed as: 

 

kδ  = reduction( oncompensati −)value   
insertion( oncompensati )value  

 
The compensated coordinate < i’1, i’2 ,..., i’n> of e 

will be computed as i’k = ik ＋δk  for each dimension 
k(1 ≤ k ≤ n). See element <6, 5> in Fig.10. 

(c) The element belongs to a complementary subarray.  
The compensated offset θ  is computed as: 

 
'
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Here if  em  > jm,  am  =  jm－1 else  am  =  em. 

mj  is the size of shared subarray in dimension m , 
'
me  is the compensated coordinate of element which has 

been subtracted interleaved compensation value from 
original coordinate of dimension m. sm is the size of the 
client array in dimension m. See element <5, 5> in 
Fig.10. 

 
5.4 An example of sharing compensation 

Fig.9 and Fig.10 show an example of dynamic sharing. 
Fig.9 is the layout of the host array. Fig.10 is the layout 
of a client array. After the initial sharing, insertion in a 
local client array at subscript 3 of dimension 2 will be 
performed first. Then a dynamic sharing of a host 
subarray will be performed. The dynamically shared 
subarray will be logically inserted into subscript 5 of 
dimension 1 in the client array. See Fig.10  

Fig.11 and Fig.12 are the S-bitmap and C-bitmap of 
Fig.9 and Fig.10 respectively. For elements <5, 1>,     
<6, 5>, <5, 5> in Fig.10, the procedures of dynamic 
sharing compensation will be described.  

(1) Element <5, 1> in a shared subarray. 
(i) The element belongs to the principal subarray of 

C-S history value 9 (dimension 2, subscript 1). See the 
C-S auxiliary tables ⓐ ⓑ ⓒ in Fig.10. The 
compensation is needed for dimension 1. 

(ii) The S-bitmap in Fig.11 is inspected. The bit 

sequence 01111100  of dimension 1 will be searched. 

The C-S revised subscript value of the element in the 
C-S revised subscript table of dimension 1 is 3 (See C-S 

revised subscript table ⓒ  in Fig.10). The total number 
of unset bits is counted up to bit 3 of the bit sequence. 
So the sharing compensation value is concluded to be 1. 

(iii) The C-S revised subscript value of <5, 1> is 3 in 
dimension 1. (See C-S revised subscript table ⓒ  of 
Fig.10). Its C-C revised subscript value is 5 in 

dimension 1. (See C-C revised subscript table Ⓒ  of 
Fig.10). With the C-S revised subscript value 3, the C-S 

revised subscript table ⓒ of dimension 1 will be 
searched from 0 to 5. The server side revised subscript 
value 5 and 4 is bigger than 3, so the inverse 
compensation value is 2. 

(iv) The C-bitmap in Fig.12 will be inspected. The C-C 
revised subscript value of the element is 5 in dimension 

1. (See C-C revised subscript table Ⓒ  of dimension 1 
in Fig.10). The bit sequence 1111010  of dimension 1 

will be searched. The number of unset bits up to 5 is 1, 
so the interleave compensation value is concluded to be 
1. 

Now the total compensation value of dimension 1 is   

λ1    = 1－2－1 = －2, so the compensated offset is 5－2 = 
3, hence the address of the element is 40＋3 = 43. 
(2) Element <6, 5> in a local subarray. 

(i) The element proves to belong to the principal 
subarray of C-C history value 19 (dimension 1, subscript 
6). See the C-C auxiliary tables ⒶⒷⒸ  in Fig.10. 
(ii)The client side insertion bitmap and client side 
deletion bitmap will be inspected. See Fig.13. The 
insertion bit sequence 0001000 and deletion bit sequence 
0000000  will be searched. The C-C revised subscript 
value of <6, 5> is 5 in dimension 2. See C-C revised 
subscript table Ⓒ  of dimension 2 in Fig.10. The total 
number of set bit is counter up to 5. For client side 
insertion bitmap, the number is 1, for the client side 
deletion bitmap is 0. So the compensation value is 
concluded to be 12 =δ . 
Hence the compensated offset value of <6, 5> is 

concluded to be 5－1 = 4 and the address is 190＋4 = 

194. 
(3) Element <5, 5> in a complementary subarray 

(i) The element belongs to the principal subarray of 
C-C history value 22 (dimension 1, subscript 5). See 

the C-C auxiliary tables ⒶⒷⒸ  in Fig.10. The size of 
the shared array in dimension 2 is 2. So the 
compensation value is concluded to be 2− .  
(ii)The C-C revised subscript value of the element in 



 

 

dimension 2 is 5. See the C-C revised subscript table 

Ⓒ  in Fig.10. 
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        (b) Client side deletion bitmap 

 
 

So the compensated offset of <5, 5> is concluded to be 
325 =−  and the address is 2233220 =+ . 

5.5 Sharing procedures 
In this section, the procedures and the effects of 

flexible sharing will be explained. 

5.5.1 Operation on bitmaps 
(1)Initial sharing: 

If the initial sharing is specified, an S-bitmap and 

C-bitmap will be created. For dimension k(1 ≤ k ≤ n), 
the length of bit sequence in the S-bitmap equals to the 
current size of the host array in dimension k. The length 
of bit sequence in the C-bitmap equals to the current size 
of the client array in dimension k. All the bits of the bit 
sequence in dimension k of S-bitmap and C-bitmap are 
initially all 0. 

If subscript i in dimension k of the host array is shared, 
and logically loaded at subscript i '  of client side array. 
For the S-bitmap, bit i of the bit sequence in dimension k  
is set as 1. See Fig.7. For the C-bitmap, bit i '  of 
dimension k is set as 1. See Fig.8. 
(2)Dynamic sharing 

After the initial sharing, assume that subscript i of 
dimension k of a host array is specified to be shared and 
will logically inserted in subscript i '  of dimension k of the 
client array. Note that a new pair of bit sequence with 
current history counter value of the client array is added 
to client side insertion bitmap while it is initially all 0 
and all kinds of bitmap will be updated. Namely, except 
S-bitmap, bits after bit i' of each corresponding bit 
sequence of client side insertion bitmap, client side 
deletion bitmap, C-bitmaps will be shift to right by 1.   

For the bit sequence of the S-bitmap, bit i of dimension 
k will be set as 1, for C-bitmap bit i’ will be set as 1, for 
client side insertion bitmap will be set as 1 and for client 
side deletion bitmap will be set as 0. See Fig.11 and 
Fig.12. 

(3) Host array insert extension. 
If a host array insert extension at subscript i of 

dimension k is performed, a new pair of bit sequence with 
the current history counter value of server side will be 
added to server side insertion bitmap with initially all 0, 
three kinds of bitmaps will be updated. Namely the bits of 
dimension k after bit i will be shift to right by 1. For the 
S-bitmap, bit i of dimension k is set as 0, for server side 
insertion bitmap, bit i of each bit sequence is set as 1, for 
the server side deletion bitmap is set as 0. 
(4) Host array delete reduction. 

If a host array delete reduction at subscript i of 

Fig.9 Dynamic sharing (server side) 

Fig.10 Dynamic sharing (client side) 

Fig.11 S-bitmap  

Fig.12 C-bitmap  

Fig.13 Client side insertion and deletion bitmap  



 

 

dimension k is performed, two kinds of bitmap will be 
updated. That is, for the S-bitmap, bit i of dimension k is 
set as 0, for the server side deletion bitmap is set as 1. If 
it is still on sharing, the deletion will be delayed until this 
part will not be shared anymore. 
(5) Local array insertion 

If an insert extension of local client side on subscript i 
of dimension k is performed, a new pair of bit sequence 
with current history counter value of client side will be 
added to client side insertion bitmap with initially all 0. 
C-bitmap, client side insertion bitmap and client side 
deletion bitmap in dimension k will be updated. Namely, 
the bits of each bit sequence after bit i will be shifted to 
right by 1. For the C-bitmap, bit i of dimension k is set as 
0, for client side insertion bitmap, bit i of each bit 
sequence is set as 1, and for client side deletion bitmap, 
the bit is set as 0. 
(6) Local array deletion 

If a delete reduction at subscript i of dimension k is 
performed, for client side deletion bitmap of dimension k, 
bit i of each bit sequence is set as 1. 

 

6. Sharing Example 
We give a sharing example of a graph database 

represented by two adjacent matrices G and G1, which are 
a host and a client array respectively. Suppose each of G 
and G1 represents a map of cities in a state.  A node in 
each graph represents a city and each number on a 
bidirectional arrow represents the distance between two 
cities.   

Initially cities ⓐⓒⓔ  in G are shared by G1 for 
visiting from the cities ⓕⓖⓗ  in G1 (Fig.14).  Note 
that the route between  ⓔ  of G and ⓖ of G1 is also 
established in G1. 
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After the initial visiting plan, suppose that ⓑ  in G is 

added as a visiting city. In this situation node ⓑ  would 
be dynamically shared from G.  See Fig.15. Note that the 

route between ⓑ  in G and ⓗ  in G1 is also established 
in G1. 
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7. Evaluations 

In this section the implementation models of simple 
sharing and flexible sharing will be compared based on a 
constructed prototype system. The server side CPU is 
UltraSPARC , 200MHz and the client side CPU is 
UltraSPARC IV, 1050MHz. 

We have the following three kinds of client array. 
(a) SS: a client array of simple sharing. 
(b) FS1: a client array that has undergone only initial 

sharing 
(c) FS2: a client array that has undergone dynamic 

sharing after the same initial sharing as FS1. 
Let the size of each dimension be s. In FS2, the 

dynamic sharing has undergone s/10 times in each 
dimension.  
7.1 Storage cost 

In FS1 and FS2, in addition to the storage required in 
SS, the S-bitmap, C-bitmap and an extra set of auxiliary 
tables will be stored beside the array body. Each array 
element occupies 4 bytes. As shown in Table 1, compared 
with array body, the auxiliary table size of SS, FS1 and 
FS2 is very small. The size of bitmap is depending on 
times of the insertion, deletion and dynamic sharing, but 
it is negligibly small. 

 
 
 
 
 
 
 
 

Fig.14 Initial sharing 

Fig.15 Dynamic sharing 

Dimensions (dim. size) 3(400) 4(90) 5(36)

Number of element

Auxiliary table size of SS

Auxiliary table size of FS 2

6.4x107

410KB

144KB

140.6KB

85KB

206.5KB

6.27x107 6.05x107

54.5KB

Array body size 244MB 239MB 231MB

Auxiliary table size of FS 1 379.5KB 135.6KB 204.3KB

Table 1 Storage cost 



 

 

7.2 Access time cost  
7.2.1 Random accessing cost 

  For a client array whose total number of elements is m, 
the random accessing is performed m/100 times. From 
Fig.16 we can find that the FS1 and FS2 is little slower 
than the SS. This is due to the complex compensation 
procedures for the accessing element. 
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7.2.2 Range accessing cost 

For a n dimensional array, all the elements in the set of 
n-1 dimensional slices of the corresponding dimension are 
retrieved. Fig.17 shows the retrieval time. The range 
access cost is much lower than the random access cost. 
There are two possible reasons. One is due to that the 
compensation procedure in random access is invoked for 
every element. While in the range access, the 
compensation value can be used for the same subscript of 
the same dimension without recomputing. The other is 
that in the range accessing, instead of sending the first 
address and compensated offset to the server, the 
searching range is sent to server, so communication cost 
can be saved. 
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8. Conclusions 
   In this paper, we introduced a new sharing scheme 

for distributed system illustrating flexible sharing. From 
the cost model, we computed and compared with simple 
sharing scheme. In the most cases we found that the 

flexibility of the new scheme can be implemented 
efficiently only at the cost of small additive increase in 
both storage and retrieval time compared with simple 
sharing. 
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