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Abstract- The Compressed Sensing (CS) technique is applied 

to the finite element method (FEM) for fast radar cross section 
(RCS) calculation over a wide incident angular band. Rather 
than point-by-point solving multiple right-hand vectors of each 
incident angle, the right-hand sides are first compressed and then 
recovered to find each incident angle response in CS procedure. 
The numerical example shows the proposed approach leads a 
magnitude decrease of computation time without losing accuracy.  

I. INTRODUCTION 

The finite-element method (FEM) is a full-wave numerical 
method that discretizes the variational formulation of a 
functional[1,2],has been widely used in electromagnetic 
analysis. For many practical applications such as radar 
imaging, our interests often a wide range of angles. In order to 
alleviate the computational burden and improve efficiency in 
this circumstance, some fast methods like interpolation [3] and 
extrapolation [4, 5] have been put forward to accelerate wide 
incident angular band calculation rather than point-by-point 
sweep. In this work, our renewed interest is to employ the 
novel compressed sensing technique for this scenario. 

Compressed sensing was first developed in  [6,7] by Candѐs 
et al in 2006,and applied in many fields recently, like CS 
radar[8], wireless sensor networks[9], magnetic resonance 
imaging[10]. It points out that if a sparse or compressible 
high-dimensional signal could be projected onto a low-
dimensional space, with the sparse signal’s priori conditions, 
the original signal could be recovered by a linear or non-linear 
reconstruction model.  

Indeed, from the view of signal and system, the incident 
wave from different angler imposed on targets can be seen as 
a series of input signals, and the scatter fields can be viewed 
as the system response. So we can first compress these signals, 
subsequently solve the response of compressed signals and 
then recover to find the original response. If the computational 
burden of compression and recovery is minor, the angular 
response sweep calculation can be accelerated by using 
compressed sensing technique. 

The rest of this paper is organized as follow. The total field 
formulations for scattering calculation using FEM are given in 
section II. A brief introduction of CS theory and some 
compression and recovery algorithms are presented in Section 
III. In section IV, the validity and efficiency of proposed 

method are demonstrated by numerical example. Some 
concluding remarks and observations are given in last section. 

II. FEM TOTAL FIELD FORMULATION FOR SCATTERING 

For scattering applications, the FEM can be formulated in 
terms of either the total field or the scatter field. In the scatter 
field formulation, the incident field is localized to the scatters 
throughout the computation space and generates a dense right-
hand side vector. While in the case of total field formulation, a 
function is typically defined that collocates an impressed 
source with an analytic (typically either first- or second-order) 
absorbing boundary condition on the boundary surface, thus 
the right-hand side vector is sparse owing to only minor 
unknowns on the boundary surface. For the sake of alleviating 
the computational burden of compressing and recovering in 
CS procedure, we choose the total field formulation. 

The typical geometry of interest of FEM is shown in Fig.1, 
the surface Sab defines the termination of the overall finite 
element region, and on this surface, the boundary value 
problem satisfies the Sommerfeld condition[2] given by (2.1) 

 
 

where Esc is the scattered electric field. According to  
                  , the formula (2.1) can be written as 
 
                                                                                         (2.2) 
 
 
The total-field inside the FEM region satisfies the second-

order wave equation derived from Maxwell equations as 
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Figure 1. FEM domain 
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In a finite-element-based solution, the weak form of (2.3) 
can be obtained by Ritz procedure with edge-element base 
functions 

 
 
 
 
 
 
 
 
 

III. COMPRESSED SENSING THEORY 

The core idea of CS theory contains three aspects, sparse 
representation, measurement matrix and reconstruction 
algorithms. Firstly, if the original signal                  is sparse or 
compressible based on the orthogonal basis    like the Fourier 
or wavelet coefficients of smooth signal etc. [11], we need to 
work out transform coefficient     , 

(3.1) 
Secondly, to ensure its convergence,  a measurement matrix 
 should be given with dimension of M × N based on 
irrelevance of     , which makes matrix ACS 

(3.2) 
to satisfy Restricted Isomerty Property (RIP)[12].Common 
choices of measurement matrix   include Gaussian random 
matrix[13], Bernoulli matrix[13] etc.. Gaussian random matrix 
has a series of advantages that the entries independently 
subject to a distribution, and it is irrelevant to most sparse 
signals, the number of measurements for accurate recovery is 
smaller. Then the measurement set from the function 

(3.3) 
can be obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At last,   -regularization or   -regularization methods are used 
to acquire the approximation or the precise vector   of the 
original signal X, which is the sparsest vector based on     , 
that is 
 
 

Two major approaches of sparse recovery are greedy 
algorithm and convex programming. The greedy algorithm, 
like orthogonal matching pursuit (OMP)[14], regularized 
orthogonal matching pursuit(ROMP)[15], computes the 
support of X iteratively, finding one or more new elements 
and subtracting their contribution from the measurement 
vector Y at each step. Greedy methods are usually fast and 
easy to implement. Whereas, the convex programming, such 
as iterative threshold method [16], is to solve a convex 
program whose minimizer is known to approximate the target 
signal. OMP is mainly to pick a coordinate of        of the 
biggest magnitude. While ROMP, a variant of OMP, combines 
the speed and ease of implementation of the greedy methods 
with the strong guarantees of the convex programming 
methods. The flow chart as shown in Fig.2, illustrates the CS 
procedure. 

IV. NUMERICAL EXAMPLE 

To demonstrate the validity and efficiency of the proposed 
method, we calculate the monostatic RCS of a metal cube with 
0.55 wavelength.  The incident wave is vertical polarized, and 
angle   ranges from 0 to 360.The measurement matrix we 
choose is a sparse column matrix based on Gaussian random 
matrix, and the compressed ratio is 0.2. OMP and ROMP are 
used as the reconstruction algorithms. The results are 
presented in Fig.3 and Fig.4 compared with point-by-point 
calculation. It can be seen that both two reconstruction 
algorithms have a good accuracy. 
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Figure 2. CS theory frame

Figure 3. RCS via OMP  
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   Figure 4. RCS via ROMP 
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The total CPU time of these two reconstruction algorithms 
and direct angular sweep method are given in Table I. 

 

TABLE I 
CPU TIME FOR DIFFERENT METHODS 

Method Time(s) Speedup 

DIRECT 1339.430 1 

CS-OMP 468.826 2.86 

CS-ROMP 318.486 4.21 

 
Furthermore, the CPU time distribution of each part using 

CS_OMP and CS_ROMP are also given in Fig.5 and Fig. 6 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, relative errors for different algorithms are 
shown in Table II. 
 
 

TABLE II 
ERROR FOR DIFFERENT ALGORITHMS 

Method Error 

CS-OMP 0.0746 

CS-ROMP 0.0328 

       

It can be concluded that ROMP shows good characteristics 
in recovering compared to OMP. In the time distribution chart, 
the CPU time for solving equation occupies a large proportion, 
while compression and recovery just take up much smaller 
part. So there is a foreseeable larger speedup when solving 
equation becomes a dominant part in whole FEM.  

Besides, we also investigated the performance of different 
measurement matrices based on the same reconstruction 
algorithm-ROMP. In Fig.7, the recovered RCS by Band, 
Column, Gauss measurement matrices are presented. The 
relative error compared to direct method in Table III shows 
the sparse column matrix is more accurate than the other two. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III 
ERROR FOR DIFFERENT MEASUREMENT MATRIX 

Method Error 

Sparse Column Matrix 0.0328 

Sparse Band Matrix 0.0458 

Gaussian Random Matrix 0.0338 

 

V.       CONCLUSION 

In this work, our innovative approach is to apply the novel 
compressed sensing technique to FEM to calculate RCS over a 
wide incident angular band. According to the numerical 
results, if the CPU time cost in solving equation occupies a 
large part of the total, this new approach could lead to a 
magnitude speedup. From a certain viewpoint, the proposed 
method improves the efficiency significantly under the 
premise of guaranteeing validity. 

Figure 7. RCS for different measurement matrices by ROMP 
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Figure 5. Time distribution chart by OMP  

Figure 6. Time distribution chart by ROMP 
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