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Abstract- A closed-form series representation for spatial 

Green's function of planar layered media for all distances from 
source, is presented. By terminating the structure by perfectly 
matched layer (PML) that is backed by perfect electric conductor 
(PEC) in semi-infinite layer at the top and/or bottom, the discreet 
set of surface wave (SW) poles is complemented by eigenmodes of 
the closed structure by PML which construct the continuous 
spectrum contribution of the original structure. Then applying 
characteristic Green's function (CGF) technique, a closed-form 
representation of spatial Green's function is derived. Very close 
to the source, where the large number of modes must be 
considered, the method is become inefficient. By combining CGF 
technique and rational function fitting method (RFFM), Green's 
function of very near field would be efficiently constructed with 
few number of poles extracted in modified VECTFIT algorithm 
in similar form of CGF-PML result. In this way, an efficient 
modal series representation is derived by using CGF-PML and 
CGF-RFFM for far from and close to the source respectively. 
The main advantage of this representation is that for desired 
accuracy the number of required modes is controllable. Excellent 
agreements with direct numerical integration of the spectral 
integral are shown in several examples. 

I. INTRODUCTION 

One of the most extensively studied topics in 

electromagnetics is the analysis of printed circuits embedded 

in planar layered media. To have excellent accuracy and also 

fast computation, integral equation based techniques could be 

used. In these methods such as electric field integral equation 

(EFIE) potential form of the Green's functions are required. 

The spatial domain Green's function of vector and scalar 

potential are represented as oscillatory Sommerfeld integrals 

and generally do not have analytical solution. Due to highly 

oscillating integrands and slow decaying, numerical 

integration is expensive.  

In the literature, different forms of series representation 

have been proposed for layered media. It is showed that by 

combining discrete complex images technique (DCIT) with 

characteristic Green's function (CGF) method and using well-

known Weyl's identity, a closed form expression for spatial 

Green's function can be obtained [1], [2]. CGF-CI is fast since 

it needs no numerical integration attempt. In DCIT [3], the 

most important and cumbersome steps is the analytic 

extraction of the surface wave poles and also quasi-static part 

of the spectrum before the complex exponential 

approximation via the generalized pencil of function (GPOF) 

method [4]. Although by choosing the sampling path 

attentively, extraction of surface waves part can be removed 

but for long distances from the source, extraction of surface 

wave poles is usually necessary for high precision. Numerical 

technique like finite difference (FD) [5] can be convenient to 

implement but it has not sufficient accuracy specially for near 

field regions. Another interesting technique to evaluate the 

Sommerfeld integrals resulting in series presented in [6] which 

is based on a reduced order modeling of differential equation 

of spectral domain. By applying VECTFIT algorithm for 

spectral Green's function in rational function fitting method 

(RFFM), a uniform series expression for spatial Green's 

function can be obtained [7], [8]. The main challenge of 

RFFM is that the generated complex poles behave 

exponentially increasing in semi-infinite layer at the top 

and/or bottom like leaky wave poles. Perfectly matched layer 

(PML) was introduced by Berenger has been used to analyze 

open waveguide problems involving microstrip substrate. In 

this technique, by adding a metal backed PML to an open 

layered media, the structure becomes closed without changing 

its electromagnetic behavior. Then, an efficient continuous 

spectrum contribution in terms of a set of discreet modes of 

the closed waveguide is possible [8].  

In this paper, combination of characteristic Green's function 

method and PML technique is used for series representation of 

spatial domain Green's function of infinite planar dielectric 

substrate. The main advantage of CGF-PML result is the 

analytically knowledge of source and observation points 

dependencies. Very close to the source, to have sufficient 

accuracy, a large number of PML modes must be considered 

in derived series expression which makes the method 

inefficient due to slowly convergent. For very near field 

regions combination of CGF method and RFFM is utilized. In 

this way field distribution could be expressed with few 

numbers of poles whereas the final form of CGF-RFFM is 

similar to CGF-PML. Therefore, with finite number of poles, a 

uniform series representation of spatial Green's function is 

derived for all distances from the source.  

This paper is organized as follows. CGF-PML is briefly 

described in section II. CGF-RFFM is studied in section III.  

Numerical results and validation of the method are presented 

in section IV. Eventually, conclusion is provided in section V. 

Meanwhile j t
e

ω  time dependency is used. 

II. CGF-PML FORMULATION 

For Green's function of magnetic vector potential, 
z

A , the 



following Helmholtz's equation 

 
Figure 1. (a) A line source on a infinite dielectric substrate, (b) A line source 

on an infinite dielectric substrate closed structure by PML. 
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should be solved along with proper boundary conditions. In 

the CGF formulation [1], [2], the studied structure is separated 

into two 1-D layered media (called 
x

N (read normal to x) and 

y
N  (read normal to y)) i.e. 

( , ) ( ) ( ).
r x y

x y x yε ε ε= +  (2) 

In this way, 
x

G and 
y

G are solutions of the 1-D Helmholtz's 

equation in the 
x

N  and 
y

N layered media respectively. That 

is 
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where xγ = , y and 0
x y

λ λ+ = . For an infinite dielectric 

substrate shown in Fig. 1(a), it can be shown that this 

separation is rigorously possible [1], [2]. One choice for the 

x
N  and 

y
N structures' parameters is: 1 2 0

x x
ε ε= = , 1 1y r

ε ε=  

and 2 2y r
ε ε= . Therefore, using CGF technique formulation, 

z
A of the original 2-D Helmholtz's equation is represented 

exactly in terms of its Characteristic Green's function 
x

G  and 

y
G  as [1] 
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and integration contour 
y

C λ  should enclose only the 

singularities of 
y

G  characteristic Green's functions, in a 

counterclockwise sense as shown in Fig. 2(a) [1]. Numerical 

integration of the integral in (4) is very expensive and time-

consuming. To circumvent this integration we can use PML 

technique. Consider again an infinite substrate like 

y
N structure which is shown in Fig. 1(a) with thickness of t . 

Then, above and below the substrate, an air regions are 

considered with thickness of 
air

d  terminated by a PMLs that 

are backed by PEC shown in Fig. 1(b). For PMLs, thickness of 

PML
d  and material parameters 0κ  and 0σ are considered. It is 

shown that by stretching the coordinates, the air region can be 

combined with the PML to form a single layer with complex 

thickness 0 0 0( / )
air air PML

d d d jκ σ ωε= + −% [10]. In this way 

modal analysis of the closed structure would be relatively 

simple. 

 
(a) 

 
(b) 

Figure 2. Integration path in 
y

λ  plane, (a) : SW poles of 
y

G  (b) : SW 

poles of ( )c

y
G . 

If PMLs properly work, then CGF 
y

G of open structure in 

Fig. 1(a) would be the same as the CGF of the closed structure 

of Fig. 1(b) which is named by ( )c

yG  ((c) denotes 'closed') 

which can be achieved simply by using usual spectral 

techniques. CGF ( )c

yG  has no branch cut and branch point 

singularities. Whereas, ( )c

yG  will have infinite discreet poles 

singularities which can be computed by argument principle 

method (APM) [11]. The poles of ( )c

yG  are the eigenmodes of 

the closed structure and can be categorized into odd and even 

TE modes. Then, closed path 
y

C λ must include infinite 

number of discreet poles of ( )c

yG , which is demonstrated in 

Fig. 2(b). Now by using well-known Cauchy-Riemann 

theorem for closed path 
y

C λ  in Fig. 2(b), a series 

representation for integral of (4) can be obtained as (7) which 

can be truncated by definite number of PML poles efficiently. 

Except real poles, two types of eigenmodes can be regarded 

which are called Berenger and quasi-leaky wave poles. It must 

be noted that independent of source and observation location, 

extraction of PML poles must be done for once and therefore 

for multiple r and ′r , 
z

A is simply computed by (7). 
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III. CGF-RFFM FORMULATION 

For large distances from the source (large x x ′− ), series of 

equation (7) may be truncated by finite number of poles 
PML

N  

poles) with good accuracy. This is because of that the higher 

order modes have large absolute value of imaginary part. But 

for very close to the source considerable number of modes 

must be considered. In order to have efficient series 

representation CGF-RFFM is utilized for small x x ′− . 

Using modified VECTFIT (vector fitting) algorithm [8] for 

CGF 
y

G ,(5) will give 

2 2
1 1

Res -Res
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p p y ypx xp
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λ λβ β= =
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−−
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Res
p

 is the pth pole and residue respectively and 
RFFM

N  is 

the total number of poles (including SW poles) for 

approximating 
y

G . It is assumed that the poles are extracted 

on the proper Riemann sheet. For (8) uniformly sampled 

points are used i.e. [ ]0 0,
x max max

t k j t k jβ δ δ∈ − − + , where 

δ is a small number or even zero and 
max

t  must be greater 

than ,maxr
ε  ( ,maxr

ε is the maximum value of relative 

dielectric constant), in order to ensure that all the SW poles 

are included. To obtain more accurate approximation larger 

max
t with more sample points can be used. Modified VECTFIT 

algorithm is so fast and will converge almost with arbitrary 

initial guesses for poles and residues. By substituting (9) in (4) 

for integration path 
y

C λ  shown in Fig. 3, we will have 
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Except surface wave poles of the original structure, some 

other complex poles which are extracted in VECTFIT 

algorithm in rational function fitting are responsible to 

construct the field comes from the continuous spectrum 

contribution. In fact in the CGF-RFFM against CGF-PML, the 

obtained poles are dependent to source and observation point 

location. Therefore, for specific source and observation point 

location, the best complex poles which result in exact 
z

A are 

produced in CGF-RFFM. This is the main disadvantage of 

CGF-RFFM which makes this method inefficient in large 

scale problem. But for small distances from the source, to 

have result similar to CGF-PML, it is useful to utilized CGF-

RFFM. The main reason is that by few number of complex 

poles, very near field can be expressed in a series form, 

although for each y  and y ′ configuration, a separate 

VECTFIT algorithm must be run. VECTFIT algorithm is fast 

enough and is more inexpensive than CGF-PML series 

computation with large number of poles for small x x ′− . 

IV. NUMERICAL RESULTS 

In this section some numerical examples are shown to prove 

the efficiency and versatility of the proposed method. The 

codes have been carried out on a 2.26 GHz personal computer.    

  Let us first define a parameter 
s

d  which denotes the distance 

from the source where for 
s

x x d′− < and 
s

x x d′− > , 

CGF-RFFM and CGF-PML are used respectively. 

 
Figure 3.  Integration path in 

y
λ − plane, : poles extracted by VECTFIT. 

The final result can be written as 
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where ( , )
sd

x x ′∏  is 1 for 
s

x x d′− < and 0 for 
s

x x d′− > . 

RFFM
N is the number of poles (with r

xq
β , Resr

q
) extracted for 

y and y ′ at hand in CGF-RFFM and 
PML

N  is the number of 

poles (with p

xq
β , Resp

q
) in CGF-PML method. 

s
d can control 

the 
PML

N in the way that for smaller 
s

d , bigger 
PML

N must be 

considered to CGF-PML's result be accurate and vice versa. 

The important point is that the extracted poles in VECTFIT 

algorithm in CGF-RFFM are not essentially orthogonal as 

PML modes of close structure in CGF-PML method. 

Therefore, to have efficient usage of Green's function in 

mode-matching type problems, small 
s

d s may be regarded. 

To validate the accuracy of the proposed method numerical 

integration of (4) along the path 
y

C λ is evaluated. 

In Fig. 4 the result of 
z

A  for dielectric slab shown in Fig. 

1(a) with 0.2t λ= , 1 10
r

ε =  and 2 1
r

ε = is shown. The 

excitation source is located at 0x ′ = and y t′ = and 

distribution of field is considered on the upper surface of the 

slab, y t= . For 0.2
s

d λ= , CGF-RFFM is used with 

8
RFFM

N = poles and CGF-PML with 50 poles. By 

considering the smaller 
s

d  ( 0.1
s

d λ= ) with the same CGF-

RFFM results, 70 PML poles must be taken to have excellent 

match with exact numerical integration. For CGF-PML, 

0.1
air

d λ=  and also we choose 0.05
PML

d λ=  and 

0 0 0/jκ σ ωε−  6 6j= − for PMLs. To search the efficiency of 

CGF-RFFM-PML, let us consider a dielectric substrate with 

0.2t λ= , 1 15
r

ε =  and 2 1
r

ε = . 
z

A for near field is shown in 

Fig. 5. For 0.5
s

d λ= , CGF-RFFM-PML is implemented with 

12 poles for CGF-RFFM and 30 poles for CGF-PML. It can 

be seen that accurate modal series representation by 42 poles 

is obtained in comparison with the numerical integration. By 

decreasing 
s

d  to 0.2λ , 62 poles are required due to more 20 

poles considered in CGF-PML method. To compare the 

rapidity of the method, let us have a comparison shown in Fig. 

6 for dielectric slab with 0.3t λ= , 1 20
r

ε =  and 2 1
r

ε =  for 

line source located at 2x λ′ =  and 0y ′ = . CGF-PML result 

which was also developed in, is illustrated for 0.1
s

d λ=  

(without using CGF-RFFM). With 50 PML poles some 

deviations can be seen near the
s

x d′ + which is due to 



insufficient number of PML modes. 
z

A for 0.02
s

d λ=  in 

CGF-PML with 350 poles is also shown which it's required 

time is at least 9 minutes. This time is mainly related to poles 

extraction and computation of truncated series in (7). Even so, 

by using just 40 poles for 0.2
s

d λ=  in CGF-PML and 12 

poles in CGF-RFFM, efficient series expression of 
z

A can be 

obtained with 52 poles in less than 1 minute. 

 

Figure 4. Amplitude of 
zA for numerical integration and the CGF-RFFM-

PML for dielectric slab with 0.2t λ= , 1 10rε =  and 2 1rε = , where 

y y t′= =  and 0x ′ = for 0.2 ,0.1sd λ λ= , 8RFFMN =  and 50, 70PMLN = . 

 

Figure 5. Amplitude of 
zA for numerical integration and the CGF-RFFM-

PML in the near field for dielectric slab with 0.2t λ= , 1 15rε =  and 2 1rε = , 

where y y t′= =  and 0x ′ = for 0.5 ,0.2sd λ λ= , 12RFFMN =  and 

30, 50PMLN = . 

V. CONCLUSION 

A closed-form and efficient series representation for spatial 

Green's function of a dielectric slab for all distances from 

source is presented by using perfectly matched layer method 

and CGF technique. By combining CGF technique and 

rational function fitting method, efficient modal series 

expression of Green's function is achieved in very near field, 

with few poles extracted in modified VECTFIT algorithm. 

The main advantage of this representation is that the number 

of required modes is controllable.  

 

Figure 6.  Amplitude of 
zA for CGF-PML and the CGF-RFFM-PML for 

dielectric slab with 0.3t λ= , 1 20rε =  and 2 1rε = , where y y t′= =  and 

2x λ′ = for different 
sd and 

PMLN . 
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