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Abstract- The band Faraday effects in photonic band gaps 
(PBG) for the three-dimensional (3D) magnetized plasma 
photonic crystals (PCs) consisting of the uniaxial material with 
face-centered-cubic (fcc) lattices are theoretically investigated 
by a modified plane wave expansion (PWE) method, which the 
homogeneous anisotropic dielectric spheres (the uniaxial 
material) immersed in the magnetized plasma background, as 
the Faraday effects of magnetized plasma are considered. The 
anisotropic PBGs and a flatbands region can be obtained. The 
effects of the anisotropic dielectric filling factor on the 
properties of first two anisotropic PBGs are investigated in 
detail. The numerical results show that the anisotropy can 
open partial band gaps in fcc lattices at U and W points, and 
the complete PBGs can be achieved compared to the 
conventional 3D dispersive PCs composed of the magnetized 
plasma and isotropic material. It also is shown that the first 
two anisotropic PBGs can be tuned by the filling factor. 

I. INTRODUCTION 

Photonic crystals (PCs) have been attracting a lot of 
interest since the concept was firstly proposed by 
Yablonovitch [1] and John [2]. The PCs is a kind of 
artificial material with a periodically modulated dielectric 
constant in space, and can produce the magic regions named 
photonic band gaps (PBGs) [3], where the propagation of 
electromagnetic wave (EM wave) is forbidden. Thus, PCs 
can be used to design the applications in the optics. Recently, 
various dispersive materials have been introduced into PCs 
to obtain the tunable PBGs, such as ferrofluids [4], plasma 
[5], superconductor [6], and metal [7]. The tunable PBGs 
means the PBGs can be manipulated by the different stimuli, 
such as the magnetic field, temperature or electric field, and 
not need change the topology of PCs. Investigating of the 
tunable PCs becomes a new research focus. The plasma 
photonic crystals (PPCs) is a typical of tunable PCs, which 
is recently a hot research area. The idea of PPCs was firstly 
proposed by Hojo and Mase [8], and can be looked as 
metamaterial [9]. The PPCs also can be used to design some 
novel tunable devices [10-12] which can realize in the 
microwave region. Therefore, the PPCs have been 
extremely investigated in detail. Compared to the 
conventional PCs, the PPCs can display strong spatial 
dispersion [13, 14] and also can be tuned by the external 
magnetic field [15]. If the external magnetic field is 
introduced into the PPCs, the magnetized plasma photonic 
crystals (MPPCs) will be realized. As we know, if the 
external magnetic field is introduced into the plasma, two 
kinds of magneto-optical effects can be achieved. One 
configuration, in which the external magnetic field is 
perpendicular to the EM wave vector, gives rise to so-called 
Voigt effects. The other is that the EM wave vector is 

parallel to the external magnetic field. In this case, the 
Faraday effects can be obtained [16]. If different magneto-
optical effects of magnetized plasma are considered, the 
different dispersive properties of MPPCs will be obtained. 
Recently, the properties of MPPCs have intensively been 
studied in theory and experiment by many research 
groups [17-20].  

The most works on MPPCs are 1D or 2D cases. A few 
published reports about 3D MPPCs until Zhang et al. [21, 
22] investigated the dispersive properties of 3D MPPCs 
with simple-cubic and diamond lattices as the Faraday 
effects of magnetized plasma are considered. As mentioned 
in their works, these 3D MPPCs suffer from high symmetry 
and dielectric constant of dielectric must be sufficiently 
large so that the resonant scattering of EM waves is 
prominent enough to open a band gap [23]. Unfortunately, 
technological difficulties in fabricating the 3D MPPCs with 
the large dielectric constant of dielectric can be found to 
achieve the complete PBGs. Therefore, if we want to obtain 
the complete PBGs in 3D MPPCs, the symmetry reduction 
[24] and anisotropy in dielectric may be good choices [25]. 
We note that many previous studies on the MPPCs 
considered that the filling dielectric only is isotropic, and 
the Faraday effects of magnetized plasma are not considered 
for 3D case at same time. Therefore, the aim of the present 
paper is to perform a study of the band Faraday effects in 
the 3D dispersive PCs consisting of the magnetized plasma 
and uniaxial material with fcc lattices based on a modified 
PWE method. The proposed 3D MPPCs are that the 
anisotropic dielectric spheres are immersed in the 
magnetized plasma background periodically with fcc lattices. 
 

II. THEORETICAL MODEL AND FORMULATION 

As we know, the expression of the plasma function εp is 
determined by the angle θ between the wave vector and the 
external magnetic field [16, 17]. If the Faraday effects of 
magnetized plasma are considered ( =0  ), the dielectric 
function of magnetized plasma is anisotropic and has this 
form: 
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where ωp, νc, and ωc are the plasma frequency, the plasma 
collision frequency and plasma cyclotron frequency, 
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e mB   in which B is the external magnetic field. Here, 
the “+” sign in the third term of denominator involving 
plasma cyclotron frequency ωc is effective dielectric 
function for the left circular polarization whereas it is the 
case for right circular polarization if the “－” sign is taken 
[21, 22]. In this paper, we shall limit our consideration to 
right circular polarization case since the resonant behavior 
can appear only in right circular polarization [21, 22]. 

In order to calculate the dispersive curves of such 3D 
MPPCs, the modified PWE method has been used [17, 26]. 
As we know, the uniaxial material is one kind of anisotropic 
material, which can be found in the nature. The uniaxial 
material has two different principal-refractive indices named 
as ordinary-refractive and extraordinary-refractive indices, 
and we consider the ordinary-refractive and extraordinary-
refractive indices are no and ne, respectively. For the uniaxial 
material, the dielectric constant aε is a dyadic and can be 
written as  
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where 2
x xn  , 2

y yn  , 2
z zn  . 

Therefore, the dielectric dyadic has only three cases for 
diagonal element permutation as [23] (a) nx=ne, ny=nz=no; (b) 
ny=ne, nx=nz=no; (c) nz=ne, nx=ny=no. We call them type-1, 
type-2 and type-3 uniaxial materials, respectively. In order 
to simplify, we just deduce the equations for calculating the 
dispersive curves of such 3D MPPCs containing the type-1 
uniaxial material. According to the technique as mentioned 
in Ref.[21], the band structure of 3D MPPCs can be 
obtained from following equation and the definitions of 
parameter also can be found in Refs.[21, 22]: 
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This polynomial form can be transformed into a linear 
problem in 4N dimension by Q
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The complete solution of Eq.(3) is obtained by solving for 
the eigenvalues of Eq.(4). Of course the dispersion relation 
can be determined by the real part of such eigenvalues. The 
analogue equation to Eq.(3) for another two types of cases 
also can be easily derived. 

III. NUMERICAL RESULTS AND ANALYSIS 

A symmetric set of primitive vectors for the fcc lattice is 
a1=(0.5a, 0.5a, 0), a2=(0, 0.5a, 0.5a), a3=(0.5a, 0, 0.5a). The 
reciprocal lattice vector basis can be defined as b1=(2π/a, 
2π/a, -2π/a), b2=(-2π/a, 2π/a, 2π/a), b3=(2π/a, -2π/a, 2π/a). 
The high symmetry points have the coordinate as Г=(0, 0, 
0), X=(2π/a, 0, 0), W=(2π/a, π/a, 0), K=(1.5π/a, 1.5π/a, 0), 
L=(π/a, π/a, π/a), and U=(2π/a, 0.5π/a, 0.5π/a). As a total 
number of 729 plane waves are used to calculate, the 
convergence accuracy is better than 1% for the lower energy 
bands [23]. Without loss of generality, we plot ωa/2πc with 
the normalization convention ωp0a/2πc=1. Thus, we can 
define the plasma frequency as ωp=ωpl=0.3πc/a=0.15ωp0 to 
make the problem scale-invariant. We also choose the 
plasma collision frequency and plasma cyclotron frequency 
as νc=0.02ωpl and ωc=0.8ωpl, respectively. Here, we only 
focus on the first two PBGs in the frequency domain 0-
2πc/a. 

 
A. The  anisotropic PBG for 3D MPPCs 

 

 
 

Fig.1. Band structures for 3D fcc MPPCs with f=0.3 but with different nx, 
ny, nz, ωp, ωc and νc, respectively. (a) nz=nx=ny=4.8, ωp=0, νc=0, ωc=0; (b) 
nz=nx=ny=4.8, ωp=0.15ωp0, νc=0.02ωpl, ωc=0.8ωpl; (c) nx=ne=6.2, 
ny=nz=no=4.8, ωp=0, νc=0, ωc=0, and (c) nx=ne=6.2, ny=nz=no=4.8, 
ωp=0.15ωp0, νc=0.02ωpl, ωc=0.8ωpl, respectively. The red shaded regions 
indicate PBGs. 
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In Figs.1(a) and (b), we plot the dispersive curves for 3D 
MPPCs with fcc lattices containing a refractive index 
contrast of n=4.8 (nz=nx=ny=4.8), f=0.3, but with different 
ωp, ωc and νc, respectively. As shown in Fig.1(a), if ωp=0, 
ωc=0 and νc=0, the magnetized plasma can be looked as the 
air. The complete PBGs can not be found. The cases of 3D 
MPPCs (ωp=0.15ωp0, νc=0.02ωpl, ωc=0.8ωpl) also can be 
seen in Figs.1(b). The similar conclusion also can be draw, 
there are not the complete PBGs. The band structures close 
at U and W points in fcc lattices. Of course, the some stop 
band gaps can be found in the some directions of symmetry 
such as Г-X and Г-L directions. This can be explained by the 
relative dielectric constant of isotropic dielectric is not 
enough to open a band gap [23]. In order to obtain the 
complete PBGs, we can use the uniaxial material 
(anisotropic material) to replace the isotropic dielectric to 
form 3D MPPCs with fcc lattices. In Figs.1(c) and (d), we 
display the dispersive curves of 3D MPPCs doped by the 
type-1 uniaxial material as nx=ne=6.2, ny=nz=no=4.8 and 
f=0.3 but with different plasma frequency, plasma cyclotron 
frequency and plasma collision frequency, respectively. In 
Fig.1(c), it is clearly seen that the two complete PBGs can 
be obtained as the type-1 uniaxial material is introduced. 
The first two PBGs cover 0.3577-0.3849 (2πc/a) and 
0.5179- 0.5242 (2πc/a), respectively. The bandwidths are 
0.0272 and 0.0063 (2πc/a), respectively. . Fig.1(d) shows 
that the edges of PBGs are upward to higher frequencies and 
a flatbands region can be obtained as the Faraday effects of 
magnetized plasma are considered (the external magnetic 
field is introduced). The main reason for formed the 
flatbands is because the existence of surface plasmon modes 
which stem from the coupling effects between the plasma 
[21, 22]. Compare to Fig.1(a), the edges of first two PBGs 
shift upward to higher frequencies, and the bandwidths of 
first two PBGs are tuned notably The first two PBGs span 
from 0.3677 to 0.3945 (2πc/a), from 0.5264 to 0.5327 
(2πc/a), and bandwidths are 0.0268 and 0.0063 (2πc/a), 
respectively. The flatbands region is located 0.12-0.2068 
(2πc/a). This can be explained by the cutoff frequency of 
right circular polarization and left cutoff frequency ( fR and 
fL ) since the fL and fR are nearly corresponding to the lower 
and upper edge frequencies of flatbands region, respectively 
[21, 22]. As the Faraday effects are considered, the cutoff 
frequency of right circular polarization and left cutoff 

frequency are fR=0.2068 (2πc/a) ( 2 2

/ 2 / 4
c c pRf      ) and 

fL=0.12 (2πc/a) (
L cf  ) [21, 22], respectively. Therefore, 

the flatbands are caused by the magnetized plasma itself. As 
mentioned above, it is found that the inclusion of type-1 
uniaxial material in 3D MPPCs with fcc lattices can open 
band gaps near high-symmetry points and the anisotropic 
PBGs (complete PBGs) can be achieved compared to the 3D 
MPPCs containing the conventional isotropic dielectric. As 
the magnetized plasma is introduced in 3D dielectric PCs 
(the Faraday effects of magnetized plasma are considered), 
the PBGs can be tuned. Consequently, introducing the 
uniaxial material into the 3D MPPCs with high-symmetry 
lattices can obtained the complete PBGs. 

 

B. Effects of the filling factor on anisotropic PBGs 
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Fig.2. The effects of filling factor on the first two PBGs for such 3D 
MPPCs with ωp=0.15ωp0, νc=0.02ωpl, ωc=0.8ωpl, ny=ne=6.2, nx=nz=no=4.8, 
respectively. The shaded region indicates the PBGs.  

 
In Fig.2, we plot the dependences of the properties of 

anisotropic PBGs for 3D MPPCs with fcc lattices containing 
type-1 uniaxial material on the anisotropic dielectric filling 
factor f as ωp=0.15ωp0, νc=0.02ωp1, ωc=0.8ωpl，no=4.8 and 
ne=6.2, respectively. The shaded regions indicate the PBGs. 
Fig.2 reveals that the edges of first two PBGs are downward 
to lower frequencies with increasing f. The both bandwidths 
of first two PBGs increase first then decrease with 
increasing f. If anisotropic dielectric filling factor is less than 
0.05, there does not exist the 1st PBG, and will disappear as 
f is larger than 0.6. The 2nd PBG will never appear until f is 
larger than 0.35. As f is increased from 0.05 to 0.6, the 
maximum bandwidths of first two PBGs are 0.0268 and 
0.0242 (2πc/a), which can be found at the cases of f=0.3 and 
0.1, respectively. Compared to the case of f=0.35, the 
frequency ranges of both PBGs are increased by 0.0028 and 
0.0219 (2πc/a), respectively. Thus, the first two PBGs can 
be tuned by the filling factor of anisotropic dielectric 
spheres. This can be explained in physics that increasing 
anisotropic dielectric filling factor means the space averaged 
dielectric constant of such 3D MPPCs becoming larger [21, 
22]. Fig.2 also reveals that the relative bandwidth of both 
PBGs increase first then decrease with increasing f. The 
maximum relative bandwidths of first two PBGs are 0.0703 
and 0.0324, which can be found at the cases of f =0.3 and 
0.1, respectively. As mentioned above, the filling factor of 
anisotropic dielectric spheres is an important parameter 
which need be chosen. It also is noticed that if anisotropic 
dielectric filling factor is small enough and close to null, the 
3D MPPCs can be looked as a magnetized plasma block. 
The flatbands regions will disappear.  

IV. CONCLUSION 

In summary, the band Faraday effects in the 3D 
dispersive PCs composed of the homogeneous anisotropic 
dielectric spheres (the uniaxial material) immersed in the 
magnetized plasma background with fcc lattices are 
theoretically investigated by the plane wave expansion 
(PWE) method, as the Faraday effects of magnetized plasma 
are considered. The equations for calculating the anisotropic 
PBGs in the first irreducible Brillouin zone are theoretically 
deduced. Based on the calculated results, some conclusion 



can be drawn. Compared with the same structure composed 
by the isotropic dielectric spheres in the air, the 3D MPPCs 
doped by the uniaxial material can obtain complete PBGs 
and one flatbands region also can be achieved. The flatbands 
caused by the existence of surface plasmon modes which 
stem from the coupling effects between the magnetized 
plasma. The relative bandwidths of first two PBGs will 
increase first then decrease as the anisotropic dielectric 
filling factor is increased in a certain range. It also is noticed 
that if plasma filling factor is large enough and close to one, 
the 3D MPPCs can be seen as a magnetized plasma block. 
The flatbands region will disappear. The 1st PBG has a 
larger relative bandwidth compared to 2nd PBG. As 
mentioned above, we can acquire the PBGs in expected 
frequency and take advantage of the uniaxial material to 
obtain the complete PBGs for 3D MPPCs with fcc lattices 
by selecting the appropriate parameters as the Faraday 
effects are considered. 
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