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Abstract- Finite-difference time-domain studies of a variety 

of cylinder arrays with nanometer-scale diameters (nanowires) 
interacting with light are presented. Scattering and absorption 
cross sections for metallic nanoscale objects can be obtained 
from such calculation. The method is verified by comparing the 
analytical results for cylindrical nanowires. Calculate the optical 
properties of Ag nanowires and study the explicit time-domain 
behavior of more cylinders. 
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I. INTRODUCTION 

The finite-difference time-domain (FDTD) method, since 
its introduction by Yee[1], has been widely used to obtain 
numerical solutions of Maxwell’s equations for a broad range 
of problems. The applications of FDTD in electrodynamics 
include antenna and radar design, electronic and photonic 
circuit design, microwave tomography, cellular and wireless 
network simulation, mobile phone safety studies, and many 
more. The method is not limited to electrodynamics and can 
be used to solve other spatiotemporal partial differential 
equations such as those occurring in acoustics. The explicit 
nature of FDTD formulation, its simplicity, accuracy and 
robustness, together with a well established theoretical 
framework have contributed to a seemingly unending 
popularity of the method.  

Nanowires, unlike other low-dimensional systems, have 
two quantum-confined directions but one unconfined 
direction available for electrical conduction. At the same time, 
owing to their unique density of electronic states, in the limit 
of small diameters, nanowires are expected to exhibit signifi-
cant different optical, electrical, and magnetic properties. 
Here we show how finite-difference time-domain FDTD 
calculations can be used to study light interacting with arrays 
of cylinders with nanoscale diameters, and we carry out a 
variety of studies of various configurations. The cylinders can 
be viewed as metallic nanowires and exhibit optical behavior 
similar to metal nanoparticles (MNP’s). In particular, surface 
plasmon polarizations (SPP’s), resonance interactions of light 
with electronic charge density near the metal surface, [2] can 
play an important role.  

Section II outlines our theoretical and computational 
methods. Section III presents cross-section results for Ag 
cylinders. Section Ⅳ concludes the paper. 

II. THEORETICAL AND NUMERICAL CALCULATION MODEL 

A. FDTD  Algorithm of Metal Nanowires  
The interaction of light with matter in the classical 

continuum limit is described by Maxwell’s equations. 
Frequency-domain solutions to Maxwell’s equations for light 
interacting with materials are constructed by allowing spatial 
(x,y,z) and possibly light frequency variation in the dielectric 
constant ε. In a region of space (x,y,z) occupied by a metal, ε 
can be complex valued and frequency dependent: 

0 ( )rε ε ε ω=  ,where 0ε  is the permittivity of free space. In 
classical electrodynamics, materials are described through a 
dielectric function ε that relates the electric displacement field 
D to the electric field E at a given frequency of light ω 
 0( ) ( ) ( )rω ε ε ω ω=D E

ra

 (1) 
The dielectric function of a metal like Ag is well-

described in the classical continuum limit by three separate 
components, 
                       int int( ) ( ) ( )r erε ω ε ε ω ε ω∞= + +                      (2) 
with, ε∞ , a contribution from d-band to sp-band (conduction 
band) inter band electron transitions, int ( )erε ω

int ra

, and a 
contribution due to sp-band electron excitations, ( )ε ω . 

int ( )erε ω  can be physically described using a multipole 
Lorentz oscillator model[3] . 
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where is an index labeling the individual d-band to sp-band 
electron transitions occurring at 

j
Ljω . In order to fit the two 

interband transitions in Ag at designed band of 
frequencies[4],we choose 2j = . 

int ( )raε ω is responsible for the plasmonic optical response 
of metals. It can be described by the hydrodynamic Drude 
model[5]. 
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where Dω is the plasma frequency, γ is the collision frequency. 
Insert Eqs. (1) and (2) into the Ampere law for a time-

harmonic field, lead to  
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Conveniently exploiting the differentiation theorem for the 
Fourier transform, we perform an inverse Fourier 
transformation of each term of (6) and (7). Thus, we can get 
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Eqs. (8) and (9) can be solved self-consistent with 
Maxwell’s equations. The inverse Fourier-transformed form 
of Eq.(5) is 
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Specializing to the transverse electric (TE) case with 
cylindrical symmetry, we drop the z coordinate in all 
equations and deal with just three of the six field components, 
Ex,Ey, and Hz.  

 

B. Cross-Section  Formulas 
The optical properties of most of the nanostructures are 

determined from intensity profiles of the electromagnetic 
fields, or from their optical cross sections[6]. A cross section is 
the effective area that governs the probability of some 
scattering or absorption event. 

We use a simple, direct procedure, which is both feasible 
and sufficiently accurate for our purposes, to estimate cross 
sections[7]. From the above description, we can get real-valued 
time-dependent electric-field and magnetic-field vectors 

and , consistent with 
an appropriate initial pulse or a source, and scattering off one 
or more particles, the complex, frequency-resolved total fields 
are 

( ) ( ), , ,t x y z=E E ( ) ( ), , ,t x y z=H H
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A comparable calculation, but we must know the incident 
time-dependent fields and , with the frequency-
resolved incident fields 

( )inc tE ( )inc tH
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The scattered fields are then given by 
                              ( ) ( ) ( )sca incω ω= −E E E ω                      (15) 

                              ( ) ( ) ( )sca incω ω= −H H H

Cross sections means per unit length of the cylinder axis, 
which therefore have units of length as opposed to length, are 
calculated. The corresponding scattering cross section is 
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where ( )scaP ω  is the absorbed power per unit area, and 
( )incI ω  is the magnitude of the incident power. In terms of 

the (time-averaged) Poynting vector associated with the 
scattered fields, scaS , and employing cylindrical coordinates 
( , , )r zϕ , 
                     ( ) ( )
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Where the path of integration is along a circle of large 
radius r∞ surrounding the cylinder for any value of z, and 
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The absorption cross section is given by 
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The extinction cross section is a sum of the two, 
                             ( ) ( ) (ext sca abs )σ ω σ ω σ ω= +                   (23) 

A useful check of the numerical calculations is to 
determine the extinction cross section directly via the formula 
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C. Numerical Details 
Infinite metallic nanowires can be considered as a two-

dimensional model. Two-dimensional nature of the problem, 
allow we use large, dense grid, without too much calculation 
burden. To assure good convergence, we have actually used 

0.1x y nmΔ = Δ = Δ =  in all the results presented here. We 
generally consider grids in x and y ranging from -1000 to 
1000 nm, with the silver cylinder structures centered about the 
origin. But for a single and two nanowires, to shorten the 
calculation time, we can choose 200 and 400 grid points in 
each direction. In order to ensure a stable simulation, time 
steps τ must under the Courant stability limit ( )1/ 2/ 3C cτ = Δ ; 
however for good convergence we chose to use 
steps / 2Cτ τ= . 1510150 −×  s is a good length of time to get 
accurate Fourier transformed fields. 

ω                    (16) 



In order to obtain accurate Fourier-transformed fields 
necessary for such calculations, incident Gaussian damped 
sinusoidal pulses were introduced into the computational 
domains using the total-field scattered-field technique[8]. 

We do calculations by treating the metal as silver with a 
Drude plus two-pole Lorentz form for its dielectric constant [9]. 
We find, ε∞ = 2.3646, Dω =8.7377eV, γ = 0.07489eV , 1LεΔ = 
0.3150, 1Lω = 4.3802eV, 1Lδ = 0.28eV, 2LεΔ = 0.8680, 2Lω = 
5.183eV, 2Lδ = 0.5482eV provide a good description of 
empirical dielectric constant data for silver over the 
λ =250nm – 1000nm range of interest. 
 

III. NUMERICAL CALCULATION MODEL 

A. Isolated Ag Cylinder 
Before studying on the properties of the cylinder surface-

plasmon resonance, we should know the accuracy of our 
FDTD calculations. So we first calculate TE scattering off a 
single Ag cylinder. Then compare with the analytical solution 
for this case. 

Fig.1 displays as curves the analytical cross sections for 
TE scattering off an Ag cylinder with radius a=25 nm. The 
symbols in the figure, are now the FDTD cross sections 
estimated from a single propagation as discussed in Sec.Ⅱ, 
using the same Drude and plus two-pole Lorentz dielectric 
constant model. The analytical and FDTD cross sections 
agree to within 10％ or better. Because the FDTD method has 
been previously used for the calculation of optical scattering 
cross sections, we believe this is demonstration that the FDTD 
method can reproduce metal nanowires scattering cross 
sections with reasonable accuracy. 

 
Figure 1. Comparison of analytical (smooth curves) and FDTD-based    

(symbols) cross sections for a single Ag cylinder of radius a =25 nm.  Extcs is 
short for extinction cross section. Scatcs is short for scattering cross section. 

Abscs is short for absorption cross section. 
 

The large peaks in Fig.1 are due to the surface Plasmon 
polarizations(SPP)resonance. FDTD algorithm can adequately 
reproduce the trends in the cross sections. So we can study on 
optical properties of nanowires using FDTD. 

 
Figure 2. Comparison cross sections for a single Ag cylinder,  

(a)  radius a = 15 nm and (b) radius a = 100 nm. 
 

We study on a single Ag cylinder with different radius 
using FDTD method. We can see from Fig.2 that, as the 
cylinder radius a increases, the resonance peak redshifts and 
broadens, and scattering becomes more dominant than 
absorption. As radius a = 15 nm, the resonance occurs at λ ≈ 
350 nm and near this wavelength /sca absσ σ ≈ 0.2, absorption 
is more intense than scattering. When a=100nm the resonance 
has redshifted to λ ≈ 360 nm with scattering, becoming more 
pronounced than absorption, /sca absσ σ ≈ 2.3. scaσ  increases 
from 11 to 554 nm between a = 15 and 100 nm, while 

absσ increases from 50 to 274 nm over the same a range.  
 
B. Linear Arrays of Ag Cylinders 

 
Figure 3. Cross sections for two Ag cylinders (a=25nm). 

 (a) d/a=2.2 and (b) d/a=3 
Fig.3(a) presents cross sections for two cylinders. We 

choose 400 grid points in each direction and centered at the 
middle of the grid, each with radius a = 25 nm. There is just a 



IV. CONCLUSION 

We presented an FDTD approach to studying the 
interaction of light with nanoscale radius metallic cylinders or 
nanowires. We obtained reasonably accurate cross sections 
for single- and multiple-cylinder arrays, confirming the 
reliability of our approach. There are many directions for 
future work. It is likely that the intensity of light developing 
and propagating between the nanowires can be significantly 
enhanced by varying the distance between the nanowires, 
cylinder radius, and of course the wavelength and propagation 
direction of the incident light. 

5-nm space between the two cylinders along y, and the ratio 
of the distance d between their centers and the cylinder radius 
is d/a = 2.2. The cylinders were exposed to y-polarized light 
moving from left to right along x. This choice of polarization, 
given the configuration of the particles, is ideally suited to 
exciting coupled surface-plasmon resonances consistent with 
induced (and oscillating) dipoles in each cylinder along the y 
axis. In particular, we find two structures in the cross sections 
in the 300–500 nm wavelength region, one a shoulder or weak 
( λ = 350 nm) close to the single-cylinder surface-plasmon 
resonance of Fig.1, and stronger maximum redshifted (λ = 
400 nm) from the weaker peak. The presence of extra 
resonance features relative to the single-particle case is due to 
the interaction of the cylinders at very short separations. 
Comparable two cylinders calculations but with d/a = 3 in 
Fig.3(b), shows just one peak and are similar to the single-
cylinder results. The nature of the resonance structures in 
Fig.3 is interesting. Whereas one might naively think the 350 
nm structure, owing to its position, is the two-cylinder analog 
of the single-cylinder dipolar resonance, plots(not shown) of 
the charge density indicate that it is of mixed dipolar and 
quadrupolar character, whereas the larger peak to the red of 
the shoulder is a more of a pure dipolar excitation. 
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