NUMERICAL ANALYSIS OF TE_0 DIELECTRIC ROD RESONATORS
PLACED BETWEEN TWO PARALLEL CONDUCTOR PLATES

Yoshio Kobayashi, Takayuki Aoki*, and Yukimasa Kabe
Department of Electrical Engineering
Saitama University
Urawa, Saitama, 338 Japan
(* Now with Nippon Electric Co. Ltd., Kawasaki, 211 Japan)

Introduction

Recently S. A. Long, et al. [1] have shown the possibility of using dielectric resonators as compact antenna elements in microwave and millimeter wave region. Theoretical studies of such resonators, which are usually placed in a free space or on a conducting ground plane, have been reported by many authors [2]-[6].

In this paper, for dielectric rod resonators placed between two parallel conductor plates, resonant frequencies and Q-factors of the TE_0 modes are numerically analyzed by introducing complex frequency into characteristic equations derived on the basis of the mode matching technique. Influence of a distance between the conductor plates on the resonant frequencies and the Q-factors is discussed from the computed results. Validity of the theory is verified by experiments.

Analysis

Dielectric rod resonators of complex relative permittivity $\varepsilon_r(1-j \tan \delta)$ and diameter D are placed between two parallel, infinitely large lossless conductor plates, as shown in Fig. 1. A time factor $e^{j\omega t}$ is assumed, where $\omega = \omega_1 + j\omega_2$ ($f_1 = \omega_1 / 2\pi$, $Q_r = \omega_1 / 2\omega_2$) is the complex angular frequency. The TE_0 modes only are treated. From the structural symmetry in Fig. 1(b) the resonant modes can be classified into those for which T-plane ($r\theta$-plane at $z=0$) is an electric wall and the others for which it is a magnetic wall. The former case also corresponds to Fig. 1(a). The resonator is divided into homogeneous subregion I, II, and III as in Fig. 1(b). The electromagnetic fields in each subregion are expanded in eigen modes which satisfy the boundary conditions on the conductor surface and the T-plane. Then imposing the boundary condition at the interfaces of the subregions and applying the orthogonality of the eigen modes, we get the homogeneous equations for the expansion coefficients. The resonant frequencies are determined by the condition that the determinant of the coefficient matrix vanishes [7]; that is,

$$\det H(\tilde{\omega}; \varepsilon_r, D, L, M) = 0$$ \hspace{1cm} (1)

where the matrix element H_{qp} ($q, p=1, 2, \ldots, N$) is given by
\[
\begin{align*}
\eta_p &= \frac{\dot{x}_p \cot \dot{x}_p - z_q \cot z_q}{\dot{x}_p \tan \dot{x}_p - z_q \tan z_q} \left[J_1(\dot{u}_p) - \frac{H_1(\dot{v}_q)}{\dot{u}_p J_0(\dot{u}_p)} - \frac{\dot{v}_q H_0(\dot{v}_q)}{\dot{u}_p J_0(\dot{u}_p)} \right] \\
&\quad \times \frac{1}{[\dot{x}_p^2 - z_q^2] \left[(\dot{x}_p / M)^2 - (z_q / L)^2 \right]} \quad \text{(2)}
\end{align*}
\]

\[
\begin{align*}
\dot{u}_p &= \sqrt{\left(\frac{\omega R}{c} \right)^2 \frac{x}{r} - \left(\frac{R}{L} \right)^2}, \quad \dot{v}_q = \pm \sqrt{\left(\frac{\omega R}{c} \right)^2 - \left(\frac{R}{L} q \right)^2}, \quad \text{(3)}
\end{align*}
\]

\[
Z_q = \{ q \pi L / h, (2q - 1) \pi L / 2h \} \quad \text{(4)}
\]

In the above, the upper and lower (or the first and second) expressions in \{ \} correspond to the electric and magnetic T-plane modes, respectively. Also \(c \) is the light velocity in a vacuum, \(J_n(x) \) the Bessel function of the first kind, and \(H_n(x) \) the Hankel function of the second kind. Furthermore, \((\dot{x}_p, \dot{v}_q) \) is given as the \(p' \)th solution of the following simultaneous equations:

\[
\begin{align*}
-\dot{x}_p \cot \dot{x}_p &= \frac{L}{M} \dot{v}_q \cot \dot{v}_q, \\
\dot{x}_p^2 - \dot{v}_q^2 &= \left(\frac{\omega R}{c} \right)^2 (\epsilon - 1) \quad \text{(5)}
\end{align*}
\]

Then, putting \(\dot{v}_q = v_{q1} + jv_{q2} \), we get

\[
(\omega_1 \omega_2 / c^2) - (v_{q1} v_{q2} / R^2) = 0 \quad \text{(6)}
\]

from the imaginary part of the second of (3). Since \(\omega_1 \) and \(\omega_2 \) are both positive for a damped free-oscillation, \(v_{q1} \) and \(v_{q2} \) are both positive or both negative, as seen from (6); that is, the \(v_q \) values exist in either the first or the third quadrant of a complex \(v \) plane. Then the fields behave as

\[
\begin{align*}
\dot{e}_q &= e^{j(\omega_1 t - v_{q1} \tau)} e^{-\omega_2 t} v_{q2} \dot{r} \quad \text{and} \quad \dot{r} = \frac{R}{\omega_2} \quad \text{(7)}
\end{align*}
\]

Some discussions of (7) yield the following result: the field having \(v_q \) in the first quadrant is in a leaky state; a part of energy \(q \) leaks away from the resonator in the radial direction, while one having \(v_q \) in the third quadrant is in a trapped state; the energy is trapped in and near the rod [8]. Thus, for \(v_q \) in (3), we choose the positive sign when \((h / q, 2h / (2q - 1)) > \lambda_0 / 2 \) and the negative sign when \((h / q, 2h / (2q - 1)) < \lambda_0 / 2 \), where \(\lambda_0 \) is the resonant wavelength.

When \((h, 2h) < \lambda_0 / 2 \), \(v_q \) for any \(q \) is always in the third quadrant; the resonant mode is \(q \) in the trapped state. Particularly, the case of \((h, 2h) = \lambda_0 / 2 \) represents a cutoff of the trapped state. On the other hand, when \((h, 2h) > \lambda_0 / 2 \), the resonant mode is in the leaky state [7], because at least one of the \(v_q \) values is in the first quadrant.

Computation and Experiments

The computations and experiments were performed using a (Zr,Sn)TiO ceramic rod (MURATA MFG. CO., LTD.) with \(\varepsilon_r = 37.43 \) and \(\tan \delta = (0.255 + 0.170 f_{GHz}) \times 10^{-4} \) measured. For the TE01 (1+\(\delta \))/2 mode of the image type resonator in Fig. 1(a), the complex frequencies versus the distance \(M \) were computed from (1). Fig. 2
shows locations of v' in the complex v plane. At $M=10\ mm$, all of v's are in the trapped state, and the number of v' in the leaky state increase with M. Fig. 3 shows the convergence of the solutions versus the number N of determinant. The solution of three figures is obtained if $N=15$. These computed results are shown in Fig. 4 by solid lines. Similarly, Fig. 5 shows one for the TE_{016} mode of the open type resonator in Fig. 1(b). Broken lines in the figures show the cutoffs. The left-hand side of the cutoff is the trapped state region while the right-hand side is the leaky state region. It is seen in Fig. 4 that a gentle peak of Q_f appears near the cutoff of v^2.

In addition the measured values of the resonant frequency f_0 and the unloaded Q, Q_u by the swept-frequency method are indicated by dots in the figures. In both cases, the f_1 curves agree very well with the f_0 values. The Q_f curves in the trapped state, are greater than the Q_u values since the conductor loss is not considered in the analysis of Q_f, while the Q_f curves in the leaky state agree well to the Q_u values since the radiation loss is predominant.

Conclusion

Validity of this analysis was verified by good agreement between the computed and experimental results. The Q_f values by this method are somewhat lower than ones presented by Tsuji, et al [4],[5]. If a proper technique exciting the TE_{016} mode is used, it is possible to apply this resonator as a compact, omnidirectional antenna with a horizontally polarized wave.

References

Fig. 1. Dielectric rod resonators placed between two parallel conductor plates: (a) image type, (b) open type.
Fig. 2. Locations of ν, as M is varied for a image type resonator in Fig. 4.

Fig. 3. Convergence of complex frequency (f_1, Q_e) for a image type resonator in Fig. 4.

Fig. 4. Computed results of complex frequency (f_1, Q_e) and measured values (f_0, Q_i) for the TE01 (1+6)/2 mode of the image type resonator.

Fig. 5. Computed results of complex frequency (f_1, Q_e) and measured values (f_0, Q_i) for the TE016 mode of the open type resonator.