NDNファンクションチェインを用いた 情報指向サービスメッシュの実装と評価

Performance Evaluations of NDN-based Information-Centric Service Mesh

早稲田大学 Waseda University 金井 謙治 Kenji KANAI

東京大学 The University of Tokyo 中里 秀則 Hidenori NAKAZATO

早稲田大学 Waseda University

Outline

- Introduction
 - Research Background
 - Research Purpose
 - Related Works
- Proposed Method
 - Information-Centric Service Mesh
 - Proposed Models
- Evaluation
 - Scenario
 - Results
- Summary
 - Conclusion
 - Future Works

Research Background

Beyond 5G / 6G

Ultra low power consumption

Autonomy

Scalability Ultra safe, Resiliency

[1]

- All devices work together autonomously
- The network immediately makes itself optimal

Service Mesh

Orchestrating virtualized small functions

Service Function Chaining

Virtually chaining functions on a network

Offering autonomous integration of networking and computing

Problems

Service Mesh

Service Function Chaining

Based on Host-oriented IP network

Scalability

Information-Centric Networking

Data-oriented decentralized network architecture

[2] K. Kanai, T. Tsuda, H. Nakazato, and J. Katto, "Information centric service mesh for autonomous in-network computing," in Proceedings of the 9th ACM Conference on Information-Centric Networking, ser. ICN '22. New York, NY, USA: Association for Computing Machinery, 2022, p. 159–161. [Online]. Available: https://doi-org.waseda.idm.oclc.org/10.1145/3517212.3559481

Service Mesh

Information-Centric Networking

Information-Centric Service Mesh

Dynamic Routing

Name-based routing will be effective

Scalability

Decentralized architecture will be effective Network function disaggregation of IC-SM still needs to be clarified To propose models of decentralized service mesh using ICN and clarify optimal network function disaggregation.

To evaluate proposed models on the virtual network.

Service Mesh

Information-Centric Networking

Related Work

Service Mesh

- Applications are constructed by services that are divided into smaller functional units (**Microservice**)
- Sidecar provides the communication mechanism among microservices

[3] R.Sharma, GettingStartedwithIstioServiceMesh[electronicresource] : Manage Microservices in Kubernetes / by Rahul Sharma, Avinash Singh., 1st ed. Berkeley, CA: Apress, 2020.

[3]

Related Work

Service Function Chaining (SFC)

- Controls the routing of packets with contents so that [4] they are routed through appropriate functions
- Virtually chaining functions on a network

[4] S. Raynovich "What Is Service Function Chaining? Definition," 2016, [Online]. Available: https://www.sdxcentral.com/sdn/network-virtualization/definitions/whatis-network-service-chaining/

Related Work

Information-Centric Networking (ICN)

- Requests content by name
- NDN (Named Data Networking) is a type of ICNs
- Communicates with Interest Packet and Data Packet

[5]

[6] H. Saito, Y. Bando, K. Kanai, and H. Nakazato, "Performance evaluations of ICN service mesh using NDN function chaining," IEICE, Technical Report vol. 122, no. 397, CS2022-85, pp. 71-76, March 2023, (in Japanese).

Proposal Models

Basic Arch. (BA)

[6] H. Saito, Y. Bando, K. Kanai, and H. Nakazato, "Performance evaluations of ICN service mesh using NDN function chaining," IEICE, Technical Report vol. 122, no. 397, CS2022-85, pp. 71-76, March 2023, (in Japanese).

Problems of BA

Sidecar container contains NLSR

[6] H. Saito, Y. Bando, K. Kanai, and H. Nakazato, "Performance evaluations of ICN service mesh using NDN function chaining," IEICE, Technical Report vol. 122, no. 397, CS2022-85, pp. 71-76, March 2023, (in Japanese).

Problems of BA

Problems of BA

Router Arch. (RA)

Router Arch. (RA)

Easy to add services

• Connects to the network through a router function pod

Reduces routing load

• Reduces the number of NDN routers

Increasing number of NFDs

Requires Router Function Pod

RA Improvements

Service Agent Arch. (SAA)

Service Agent Arch. (SAA)

Reduces the number of NFDs

Moves Sidecar FB into the Router
Container

The load on the Router container increases

- Requires Agent Manager
- A Service Agent FB is required for

each service

Sharing NFD Arch. (SNA)

Sharing NFD Arch. (SNA)

Reduces the number of NFDs

• Removes the NFD in the Sidecar container

Reduces the load on the Router container

- No need for an Service Manager
- Sidecar FB runs in a Sidecar container

Evaluation

Measurement Parameters

- Service Memory Usage
- Content Retrieval Time

Content Size	10.76 MB
Request Interval	10 seconds
Number of Requests	10
NFD Cache Size	0
* To measure memory usage	
Allocated CPU	1 for each pod
* To isolate resource between pods	

Results

Memory Usage

SNA is smallest

• Share the NFD of the Router container

SAA is largest

• Service Manager runs in the Router container

SNA can reduce memory usage

Results

Content Retrieval Time

SAA is smallest

• TCP is faster than NDN

RA is largest

- Increasing number of NFDs
- Time to search for NFD data structures

SAA can reduce end-to-end latency

Conclusion

We proposed Four IC-SM Models

The Number of NDN Routers Reduced

End-End	Memory
Latency	Usage
Reduced	Reduced

Performance Monitoring

Trace Facility

Autonomous Management

Practical Application

Practical Performance Evaluation

This work was partially supported by NICT, Grant Number 05601, Japan.

APPENDIX

2-relay topology using Basic Architecture

Evaluation

2-relay topology using Router Architecture or Sharing NFD Architecture

2-relay topology using Service Agent Architecture

メモリ使用量の内訳 (2-relay)

