

Design of an OpenFlow

Switch on a Multi-core

Platform

Ritun Patney, Erik Rubow, Ludovic Beliveau, Ramesh
Mishra

Ericsson Research, San Jose

{ritun.patney, erik.rubow, ludovic.beliveau, ramesh.mishra}
@ericsson.com

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 2

Introduction to OpenFlow

App App App

Network OS

OF
Switch

OF
Switch

OF
Switch

OF
Switch

OpenFlow protocol

API

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 3

Forwarding Abstraction (OF 1.1)

OF
Switch

Flow

Table 1

Flow

Table 2

Flow

Table n

Match Fields Actions

Ing. Port Ether dst Ether src MPLS label

› Forwarding abstraction contains multiple flow tables

› Each table has a set of fields and a set of actions

› Each table is generalized to contain 14/15 match fields

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 4

Platform Details

› Highlights

• 64 Cores, 866MHz

• On chip interconnect

• Caches

 Each core has 16KB L1 I-

Cache, 8KB L1 D-Cache, and

64KB combined L2 cache per

tile

• Single Thread per Core

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 5

Challenges in Many Core Platforms

› Challenges

• Splitting packet processing into tasks

• Hiding memory latency

 Single threaded model

 Caches are not extremely large

 Effectively apply pre-fetching

Work on multiple packets in the

same code loop

• Sharing Data across Cores

 Shared memory consumes cycles

on locking and cache misses

 On chip communication network

prone to errors

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 6

Algorithmic Packet Classification

Field Lookup Nodes

Aggregation Network

F1 F2 F3 F4

A3,4 A1,2

A1,2,3,4

F5 F6 F7 F8

A7,8 A5,6

A5,6,7,8

A1,2,3,4,5,6,7,8

Lookup Result

› Packet header is decomposed into individual fields and fed

to the classifier

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 7

RFC vs DCFL

F1 F2

A1,2

F1 F2

A1,2

EQi EQj

L1, L2 K1, K2

RFC

DCFL

RFC DCFL

Rule Set Pre-

computed,

stored as 2d

array

Cross-

product taken

at run time

Memory

Accesses

Constant Variable

Memory

Latency

Easier to hide

via Pipelining

Harder to

Pipeline

Rule Set

Scaling

Poor Scales Well

Incremental

Updates

Hard Efficient

(Equivalence ID)

(Labels)

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 8

DCFL Lookup Architecture

› Tree topology hard to map to a grid

› Main Problem => Deadlocks while
distributing packet fields via the
mesh

› Solution => Linear Topology

› Advantages
• Easy to map, avoids deadlocks

› Cons
• Consumes several cores

• Spend cycles in receiving and passing
packet fields

Table id

Labels

Packet Fields

Field Lookup

and Aggregator

(FLAG)

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 9

DCFL Internal Node Pipeline

› CX
• Cross-products the labels to produce keys

• Performs one pre-fetch operation for mem[keyi]

› ACCESS
• Performs one access operation to load

mem[keyj]

› Scheduling
• CX, ACCESS scheduled in a tight code loop

• Constant number of outstanding pre-fetches
maintained to maximize memory performance

› Non trivial to implement
• Primarily because of variable memory accesses

per packet

• Extra logic keeps state per packet, next key to
prefetch, etc.

CX

B1, B2

A1, A2

A1, B1

A1, B2

A2, B1

A2, B2

ACCESS

(From previous

FLAG node)

(Generated

internally)

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 10

RFC: Lookup Pipeline

› Because RFC involves a fixed number of memory accesses, it can be easily pipelined

› Each circle is composed of pre-access (pre-fetch) and post-access operations

› Each operation is executed once per iteration of a tight code loop

› Each stage operates on a different packet, allowing for more parallelism

› Pre-access and post-access operations are scheduled in order to maximize the number
of outstanding accesses per core and to maximize DRAM throughput

• The core can continually maintain a high number of outstanding prefetches across loop iterations

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 11

RFC: System Architecture

› The pipelined and highly optimized structure of the lookup
code leads to an overall architecture where packet parsing
and action processing are handled on separate cores

› Lookup requests and responses are sent between cores

› The load on each core is roughly balanced, depending on
the match fields supported and actions applied

› Several instances of the above pipeline run on the chip

Lookup
Actions

TX

RX

Parse

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 12

Results

› Rule Set Scalability

• DCFL designed for 1 million flow entries. Easily Extensible.

• RFC limited by the algorithm

› Performance

• Data Path - Single Table

 DCFL - 3.5 Mpps for a single pipeline using 20 cores

 RFC

- 10.7 Mpps for 5-tuple classification, 15 pipelines

- 4.5 Mpps for full 14-tuple classification, 15 pipelines

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 13

Conclusion

› The high-level architecture of this implementation was

driven by the fact that we were using cores with a single

hardware thread. This was the source of most of the

complexity and optimization effort.

› The very wide multi-dimensional lookups in OpenFlow are

fundamentally expensive

• The problem is magnified by multiple tables

• The number of standard match fields has only increased with each

OpenFlow version

• A flow cache is one possible work-around for this, but isn’t always

appropriate

