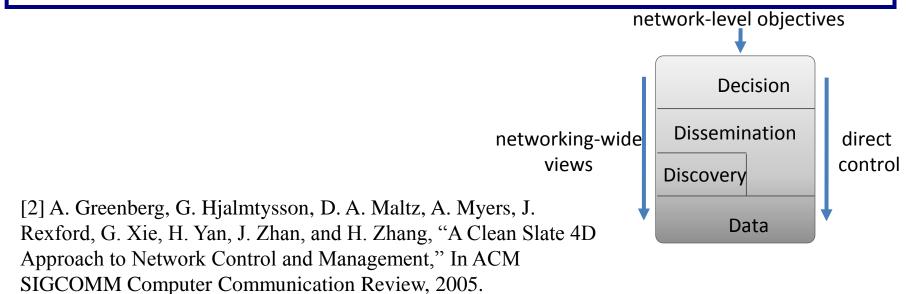
Thoughts on control and management planes to enhance manageability of future carrier networks

Kohei Shiomoto, Yousuke Takahashi, and Keisuke Ishibashi NTT Service Integration Laboratories

NTT


Headache in today's carrier network operation

- Carrier network is huge.
- > Today's carrier network is IP-based.
- Simple best-effort routing is not enough.
- ≻ It is difficult to tweak OSPF and BGP.

NTT

4D architecture [2]

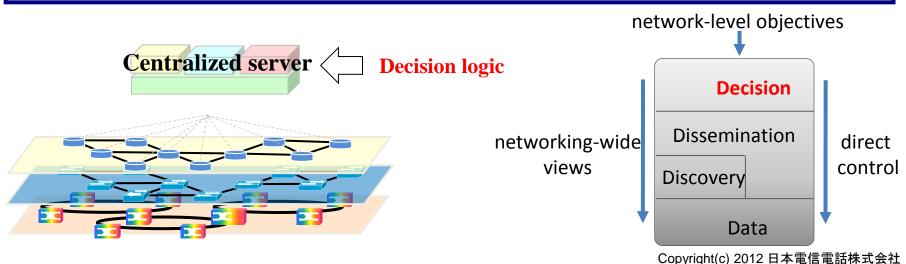
- NTT 🕐
- Clean-slate approach for control and management planes
- Principle for control and management
 - (1) network-level objectives, (2) network-wide view, (3) direct control
- Centralized architecture with four planes
 - (1) decision, (2) dissemination, (3) discovery, (4) data

Network-level objectives: Principle in 4D architecture 127 (2)

- Network should be configured via specification of the requirements and goals for its performance. Ex.
 - a traffic-engineering objective could be stated as "keep all links below 70% utilization, even under single-link failures."
 - a reachability policy objective could be stated as "do not allow hosts in subnet B to access the accounting servers in subnet A."
- But,... Today's networks require these goals to be expressed in low-level configuration commands on the individual routers.
 - Objectives can be easily violated due to semantic mistakes in translating the network-level objectives into specific protocols and mechanisms.

Network-wide view: Principle in 4D architecture [2] **NTT** (2)

- Timely, accurate, network-wide views of topology, traffic, and events are crucial.
- The network-wide view must accurately reflect the current state of the data plane.


- Control and management system should have both the ability and the responsibility for setting all the state in the data plane that directs packet forwarding.
- The decision logic should not be hardwired in protocols distributed among routers/switches.
 - Rather, only the output of the decision logic should be communicated to the network elements.
- Satisfying network-level objectives is much easier with direct control over the configuration of the data plane.

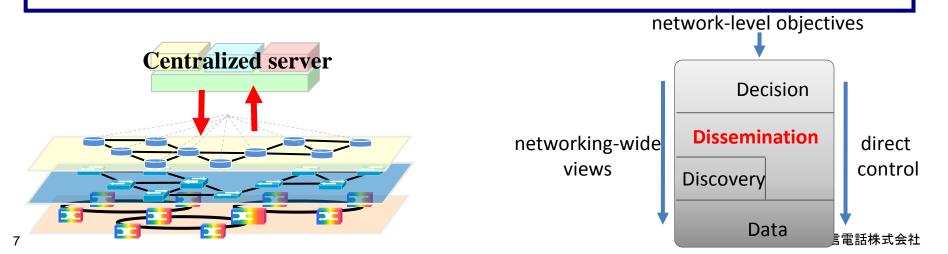
Decision plane: Plane in 4D architecture [2]

Decision on network control

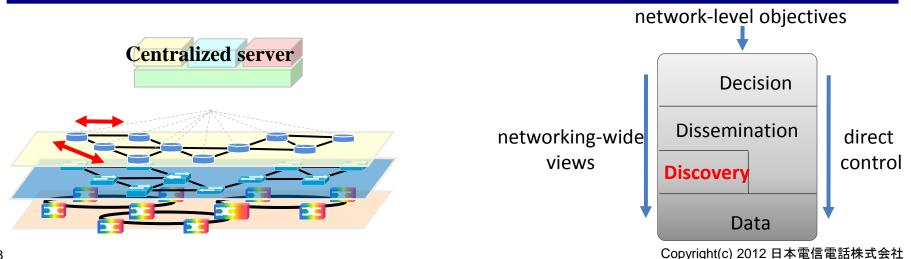
Replace today's control plane

- Capture network-wide view.
- Compile network-level objective to primitives for data-plane commands.
- Centralized control
 - Logic for Decision plane is not implemented in distributed protocols between routers. Rather it is implemented in centralized server.

Dissemination plane: Plane in 4D architecture [2]


- Communication between server and router
 - Result of Decision plane is transmitted (Server to Router)
 - Result of Discovery plane is transmitted (Router to Server)

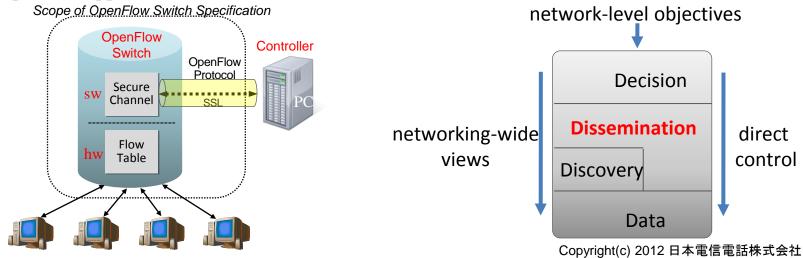
Robust and efficient mechanism is required


Direct control over router (Decision plane logic result is directly transmitted to routers)

Separation of Decision logic from routers

- Pros 1: Simplify distributed protocols between routers.
- Pros 2: Complicated algorithm can be implemented in the server.
- Pros 3: Simplify routers. Routers have only to execute instructions sent by the server for direct control over data-plane.

- Routers run distributed protocol to discover networkwide view of topology and traffic.
 - Dissemination plane is used to notify the link information to the server
 - Decision plane is used to capture Network-wide view of topology and traffic



Openflow [3]

- Example of 4D architecture
 - Openflow protocol can be regarded as Dissemination plane
- Separation of control and data planes
 - Ground-up re-desing of control plane
 - 10-Tuple is defined for flow
 - Rule, action, counter

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, vol. 38, no. 2, April 2008.pp.69-74

What is missing in Today's openflow?

- Topology discovery
- Traffic measurement data retrieval
- ➤ Fault notification
- Interaction to *fast-processing* features implemented in Hardware (protection switching, ...)
- Dissemination plane, how to configure it?

CLI can be used as Dissemination plane?

- CLI can be regarded as a way to configure switches and routers in network.
- Configuration files of all routers can be used as database of network constructions.
- By analyzing CLI commands in configuration file, we could capture network-wide view.

CLI can be used as Dissemination plane?

- Today's carrier networks requires thousands of lines of CLI commands to configure switches and routers [1].
- CLI commands are highly dependent on manufactures who provided switch and/or router products.

[1] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rexford, "The Cutting EDGE of IP Router Configuration," ACM CCR, vol. 34, no. 1: January 2004, pp.21-26. Copyright(c) 2012 日本電信電話株式会社

CLI can be used as Dissemination plane?

- > CLI should be simple.
- CLI should be vendor-neutral.
- CLI should have functionalities for network management
 - Direct control
 - Network-wide view
 - Fault management
- Providing the information necessary to construct a complete, consistent, network-wide view should be one of the primary functions of the routers and switches.
 - Topology discovery
 - Traffic measurement
 - Fault notification
 - Interaction to *fast-processing* features implemented in Hardware (protection switching, ...)

Open research areas are here!