

Experiences in Realizing Large
Robust Software Defined
Networks

Ravi Manghirmalani
Ramesh Subrahmaniam

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 2

Controller Offload

• SDN mandates a split of control and forwarding plane

• The control and forwarding planes communicate through a
TCP connection

• Every lookup miss in the forwarding plane causes the
controller and forwarding to exchange three messages

 - Packet-In Missed information to Controller

 - Flow-Mod Install a Rule in the forwarding table

 - Packet-Out Forward the packet to outgoing port

• The rate of arrival of new flows will significantly impact this
TCP connection

• Applications like Firewall would cause an increased
communication between the control and forwarding plane

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 3

Controller Offload

• Our solution is to implement a shadow table that

 - supports flexible rules

 - allows switches to install rules without involving
controller

 - allows switches to monitor sessions

• New Message to Modify Shadow Table instead of the
OpenFlow Table

• Algorithm change:

 - Lookup Shadow Table in the case of OpenFlow Table
miss

 - If Match in shadow table execute action

 - If Miss in shadow table send packet-in to controller

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 4

Controller Offload – Bridging (No
Shadow Table)

 C1

Host A Host B

Pkt – Dest B; Src A

Packet-In

1. Lookup Src A in Learning Table; If miss add A port C

C D

Flow mod 2 Flow mod: 1 Packet-Out: Flood

Pkt - Src A; Dest Brdcst

Messages: No Shadow Table
1. Packet-In (Missed pkt from A)

2. Flow mod 1: Add Eth Src B; Eth
Dest *; Output Controller

3. Flow mod 2: Add Eth Src *; Eth
Dest A; Output Port C

4. Packet-Out; Flood

Pkt – Dest A; Src B

Packet-In

5. Packet-In (Missed pkt from B)

2. Lookup Src B in Learning Table; If miss add B port D

Flow mod 3 6. Flow mod 3: Del Eth Src B; Eth Dest *;
Output Controller

Flow mod 4

7. Flow mod 4: Add Eth Src *; Eth Dest B;
Output Port D

Packet-Out

8. Packet-Out: Eth Src B; Eth Dest A; Output
Port C

Pkt – Src B; Dest A

Learning Table in Controller C1

Host A Host B
D

Pkt - Dest Brdcst; Src A

Pkt – Dest A; Src B

M

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 5

Controller Offload – Bridging (With
Shadow Table)

 C1

Host A Host B
D C

M

M

Messages: With Shadow Table

Pkt – Dest B; Src A

Learning Table in Switch

1. Lookup Src A in Learning Table; If miss add A port C
2. Lookup Src B in Learning Table; If miss add B port D

Packet-In

1. Packet-In

Flow Mod 1 Flow Mod 2

2. Flow Mod (shadow) 1: Eth Src B;
Eth Dest *; Output Local

3. Flow Mod 2(shadow): Eth Src *;
Eth Dest A; Output Port C

Packet-Out: Flood

4. Packet-Out: Flood

Pkt – Dest: Brdcst; Src A

Pkt – Dest: A; Src B

Shadow Table Handler installs rule:

Eth Src *; Dest B; Output Port D

Shadow Table Handler forwards packet out of
port C

Pkt – Dest B; Src A

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 6

Controller Offload – Session
Monitoring (No Shadow Table)

 C1

FTP Client FTP Server
TCP SYN; Dst: Port 21; Src: Port x

Packet-In

Messages: No Shadow Table

1. Packet-In

Flow mod 1

2. Flow Mod 1: IP Src IP1; IP Dst IP2;
TCP Dst Port 21; TCP Src Port x;

IP1 IP2

Flow mod 2

3. Flow Mod 2: IP Src IP2; IP Dst IP1;
TCP Dst Port x; TCP Src Port 21;

TCP SYN-ACK; Dst: Port x; Src Port 21

Packet-Out
4. Packet-Out

TCP SYN; Dst: Port 21; Src: Port x

C D

M

Dst port 21; Src Portx; PORT 5001

FTP Client server negotiate Port 5001 on the control
channel (Port 21) for directory listing.

TCP ACK; Dst Port 21; Port x

The switch needs to open this port only (for security).

M

Depending on the number of commands new
ports may be negotiated.

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 7

Controller Offload – Session
Monitoring (No Shadow Table)

FTP Client FTP Server
C D

M

M

Dst port 21; Src Portx; PORT 5001

TCP-SYN; Dst 5001; Src 20

Packet-In

Flow Mod: Dst 5001; Src 20 Flow Mod: Dst 20; Src 5001 Packet-Out: Dst 5001; src 20

Dst port 21; Src Portx; PORT 5002

TCP-SYN; Dst 5002; Src 20

Packet-In

Flow Mod: Dst 5002; Src 20 Flow Mod: Dst 20; Src 5002 Packet-Out: Dst 5001; src 20

Every new data channel port that is negotiated on the control channel will cause a miss in the OpenFlow table
and hence 4 messages across the OpenFlow channel to the controller.

Method 1

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 8

Controller Offload – Session
Monitoring (No Shadow Table)

FTP Client FTP Server
C D

M

M

Dst port 21; Src Portx; PORT 5001

Every conversation packet on the control channel (port 21) is sent to the controller so that it can parse the PORT
command and send a Flow mod to install flow rule for the matching data channel port

Dst port 21; Src Portx; PORT 5002

Method 2

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 9

Controller Offload – Session
Monitoring (With Shadow Table)

 C1

FTP Client FTP Server
TCP SYN; Dst: Port 21; Src: Port x

Packet-In

Messages: With Shadow Table

1. Packet-In

Flow mod 1

2. Flow Mod Shadow: IP1, IP2, Action
Output Local

Reg Exp: ¥b(PORT|port|PASV|pasv)¥b((25[0-5]|2[0-

4][0-9]|[01]?[0-9][0-9]?,){3}¥b(25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)¥b

IP1 IP2

TCP SYN-ACK; Dst: Port x; Src Port 21

Packet-Out
3. Packet-Out

TCP SYN; Dst: Port 21; Src: Port x

C D

M

Dst port 21; Src Portx; PORT 5001

FTP Client server negotiate Port 5001 on the control
channel (Port 21) for directory listing.

TCP ACK; Dst Port 21; Port x

The switch needs to open this port only (for security).

M

Depending on the number of commands new
ports may be negotiated.

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 10

Controller Offload – Session
Monitoring (With Shadow Table)

FTP Client FTP Server
C D

M

M

Every conversation packet on the control channel (port 21) is parsed by the regex engine with the
expression passed to the shadow table in the switch

It also installs rule for the data channel port being negotiated (both directions)

Forwards the control channel packet to the client/server

Dst port 21; Src Portx; PORT 5001 Dst port 21; Src Portx; PORT 5002

Monitoring with Shadow Table

If IP Src == Client IP and Dest IP == Server IP

Or IP Src == Server IP and Dest IP == Client IP

 Trigger Regex Engine with

 ¥b(PORT|port|PASV|pasv)¥b((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?,){3}¥b(25[0-5]|2[0-4][0-9]|[01]?[0-
9][0-9]?)¥b

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 11

Controller Offload – Flexible Rule
Matching

• OpenFlow does not support port/address ranges to be
matched

• Takes an inordinate number of rules to support all
ports/addresses in a range. Should be done by enumerating
the ports/addresses with a rule for every port/address
combination

• Port/Address ranges with certain ports/addresses to be
excluded is even harder

• Greatly increases controller to switch OpenFlow channel
communication

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 12

• The offload mechanism rules can be expressed by the key
words range, list and exclude, ip, port, mac, source and dest

• The rules with these keywords can be parsed into data
structures to be implemented in the shadow table

• These rules will optimize the number of rules in the
OpenFlow table

Controller Offload – Flexible Rule
Matching

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 13

Controller Offload – Flexible Rule
Matching

Rules such as the ones shown could be implemented very
efficiently by using the shadow table mechanism.

• a. Rule: source IP Dest IP Port range N1 to N2 exclude N, N1 < N < N2

 Example: source 172.16.10.100 dest 171.16.23.1 dest port range 10 to
30 exclude port 20

• b. Rule: dest IP address Range A.B.C.0/24 to A.B.C.D/24 exclude A.B.C.P,
0 < P < D

 Example: source 172.16.10.0/24 to 172.16.10.20/24 exclude 172.16.10.2
source port 49200 dest port 50000

• c. Rule: list IP A.B.C.D, E.F.G.H, A1.B1.C1.D1 port list p1, p2, p3

 Example: list ip 172.16.10.1, 172.16.10.3, 172.16.10.4 port list 22, 23, 24,
25

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 14

Multiple Controllers

• High degrees of Scale and reliability demand a cluster of
controllers acting as one

• Need to balance the Forwarding Element (FE) connection
load between the multiple controllers

• Need to re-balance connections in the case of controller
failures

• In some cases need to communicate the notion of Master
controller to the FE

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 15

Multiple Controllers

• Existing OpenFlow method to Reject Connection
• No response to the ECHO_REQUEST message

• This increases the time to converge on required information

• The Forwarding Element has to implement logic to connect
with the appropriate controller upon failures

• Control Plane Load Balancing cannot be implemented

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 16

Multiple Controllers

• One solution is to explicitly configure each Forwarding
Element with the required information and this quickly
devolves into a configuration nightmare

• Our solution is to extend the OpenFlow with a simple reject
message

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 17

Multiple Controllers –
Redirect/Reject Connection

 C1 C2

 FE

 IP1 IP2

IP2

 C1 C2

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 18

Multiple Peer Controllers – Load
Balancing

 C1 C2 C3

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 19

Multiple Controllers – Master
Failure

Election Election

 Master

C1 C2 C3

Election

 Master

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 20

Establishing Controller Connectivity

• OpenFlow specification is unclear about the connection
initiator.

• Either Controller or the FE can initiate the OpenFlow
connection

• An IP address configuration is required on the Controller
and the FE

• The FE needs to be configured with the IP address of the
controller

• The Controller and FE are assumed to be in the same IP
subnet or broadcast domain.

• The Controller and FE are connected to each other via their
respective management ports to the same switch

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 21

Establishing Controller Connectivity

• Solution:

• Uses Open Flow forwarding

• Is Distributed and scalable

• Uses LLDP to exchange information

• Runs an algorithm to build a database of controllers and
the ports through which they can be reached

• Uses the database to find an optimal path to the
controller

• Populates forwarding rules based on this path

• This design accommodates out-of-band and in-band
deployments

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 22

Establishing Controller Connectivity

 C1 C2

IP1
IP2

IP8 IP7

IP6

IP5 IP4 IP3

M

M

A B C D

E

F

G

H

I

J

K

L

N

M

FE1 FE2 FE3

FE4

FE5 FE6

Controller and FE exchanging LLDP messages

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 23

Establishing Controller Connectivity

Configured
Controller

FE1 -> IP1

FE2 -> IP1

FE3 -> IP2

FE4 -> IP1

FE5 -> IP1

FE6 -> IP2

C1 C2 In-Band

Example of

Logical

Connections

FE2

FE4

FE3 FE1

FE5

FE6

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 24

Establishing Controller Connectivity

Configured
Controller

FE1 -> IP1

FE2 -> IP1

FE3 -> IP2

FE4 -> IP1

FE5 -> IP1

FE6 -> IP2

C1 C2 Out-Of-Band

Example of

Logical

Connections

FE2

FE5

FE3

FE4

FE1

FE6

Slide title

Do not add objects or

 Ericsson Internal | 2012-02-08 | Page 25

