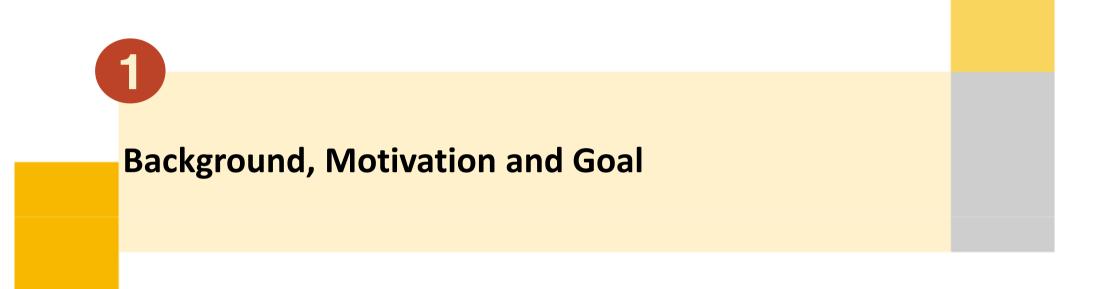


World Telecom Congress 2012 Workshop on "Cloud Computing in the Telecom Environment, Bridging the Gap"

A Filesystem Layer Data Replication Method for Cloud Computing

Masanori Itoh, Kei-ichi Yuyama, Kenjirou Yamanaka March 4, 2012 NTT DATA CORPORATION


Agenda

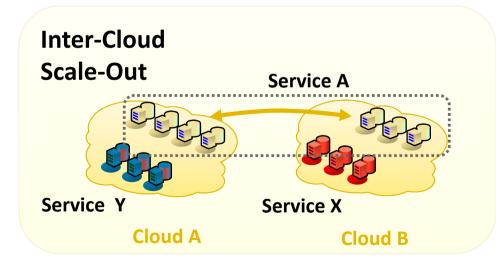
- 01 Background, Motivation and Goal
- **02** Overall Considerations and Related Works
- **03** Problem Analysis and Basic Ideas
- **04** Design and Implementation
- **05** Evaluation
- **06 Future Works**

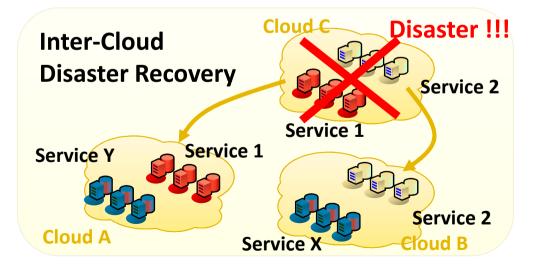
07 Summary

Copyright © 2012 NTT DATA CORPORATION

1. Background

- Social Background
 - Eastern Japan Disaster ('東日本大震災') on March 11, 2011
 - Strong Needs for Disaster Recovery
 - Un-predictable Computing / Networking Resource Demand
 - e.g., Systems for Checking People's Safety


Technical Background


Demand for Inter-Cloud Federation Technology

• Aggregating Resources of Multiple Cloud Systems

✓ Inter-Cloud Scale-Out

✓ Inter-Cloud Disaster Recovery

- Motivation
 - A National R&D Project Shooting for Inter-Cloud Scale-Out and Disaster Recovery in terms of Resource Control
 - The Project Achieved Enabling Computing / Networking
 Resource Federation among Heterogeneous Multiple Cloud
 Systems
 - Standardization Effort : GICTF (http://gitctf.jp)
 - But, we needed to address <u>the Tenant Data Replication Issue</u> in a Suitable Way for <u>Inter-Cloud Computing Environment</u>.

1. Goal

• Goal

- An Efficient Mechanism Enabling Tenant Data Replication (e.g., Database, various Log Files, etc.) with Reasonable Trade Offs under Inter-Cloud Computing Environment
 - Need to Keep Replica(s) of Data as Up-to-Date as Possible
 - Immediate, Synchronous, ... Replication Mechanism

1. Goal

• Requirements

1. Performance

- 1. Better Than Existing Solutions
- 2. Sufficient Replication Throughput even for Geologically Distributed Environment (e.g., Tokyo Osaka)

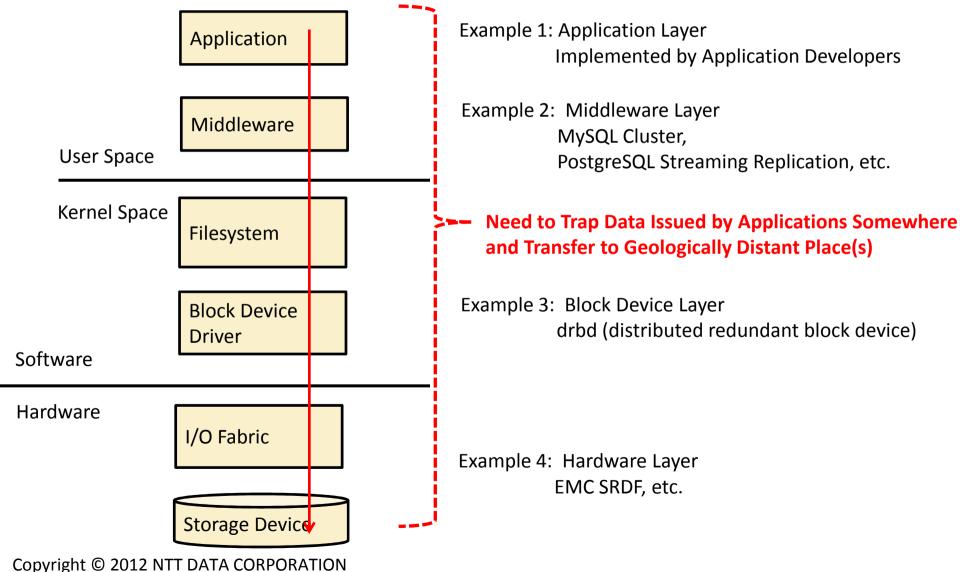
2. Minimum Impact to Wide Variety of (New/Existing) Systems

- 1. Minimum Software (esp. Application) Modifications
- 2. Reasonable Operation Impact

3. Cost Efficiency

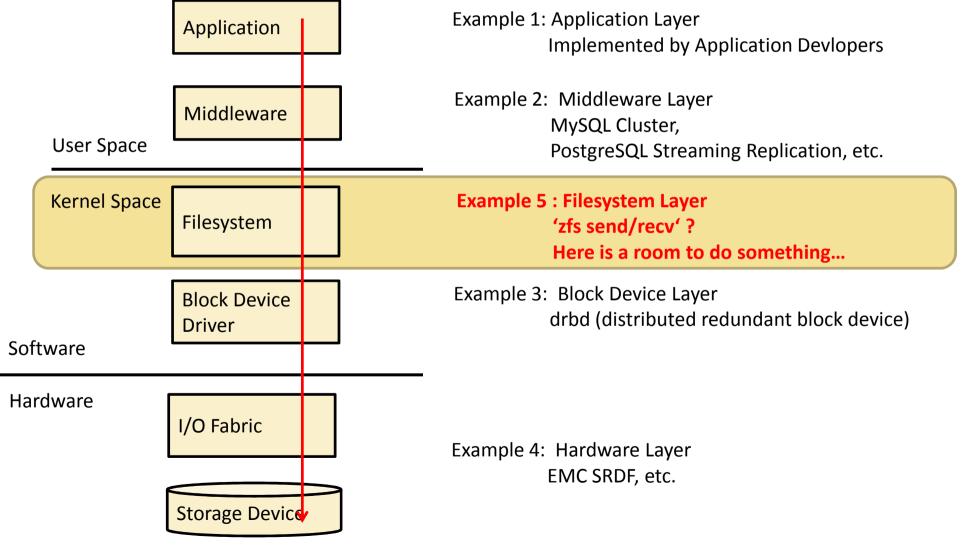
1. No Expensive Special Hardware

2 Overall Considerations and Related Works


2. Possible Layers

- Possible Layers (Existing Solutions)
 - □ Application Layer
 - User Application Dependent Implementations
 - □ Middleware Layer
 - MySQL Cluster, PostgreSQL Streaming Replication, etc.
 - □ Block Device Layer
 - drbd
 - □ Hardware Layer
 - EMC SRDF, etc.

Overview of Possible Layers


2. Related Works – Pros/Cons Analysis

• Example 1/2 : Application/Middleware Layer : (e.g., MySQL Cluster)

- Pros Easy to Keep Consistency, Reasonable Performance
- Cons Application/Middleware Dependent
- Example 3 : Block Device Layer : (e.g., drbd)
 - Pros Application/Middleware/File System Neutral <- Good !
 - Cons Poor Performance, Small Room to Optimize
- Example 4 : Hardware Layer
 - Pros Software Neutral
 - Cons Hardware Dependent, (Very Much) Expensive, Poor Performance, Very Small Room to Optimize

• Overview of Possible Layers

Copyright © 2012 NTT DATA CORPORATION

2. Related Works – Pros/Cons Analysis

- Example 1/2 : Application/Middleware Layer : (e.g., MySQL Cluster)
 - Pros Easy to Keep Consistency, Reasonable Performance
 - Cons Application/Middleware Dependent
- Example 3 : Block Device Layer : drbd
 - Pros Application/Middleware/File System Neutral <- Good !
 - Cons Poor Performance, Small Room to Optimize
- Example 4 : Hardware Layer
 - Pros Software Neutral
 - Cons Hardware Dependent, (Very Much) Expensive, Poor Performance, Very Small Room to Optimize
- Example 5 : File System Layer
 - Pros Application/Middleware Neutral, Large Room to Optimize
 - Cons Needs Kernel Level Programming

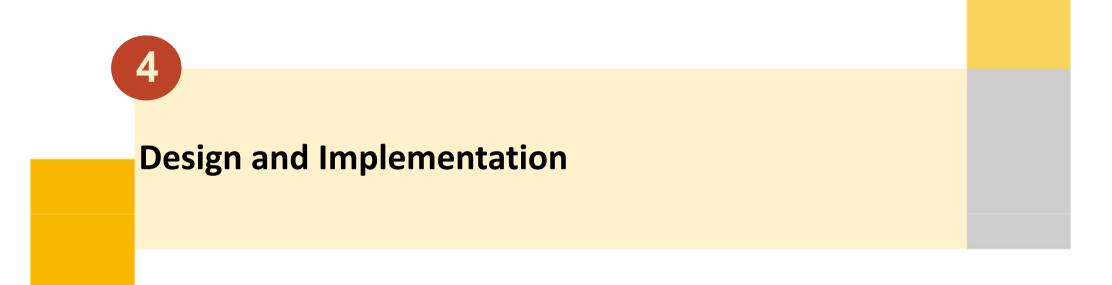
• Poor Performance

- The Lower Layer a Replication Mechanism is Implemented, the More Sensitively its Throughput is Affected Under Geologically Distributed Environment (LFP).
- Find Out the Best Place / Way to do Replication Work in terms of Performance.
 - Not Sufficient Tenant Data Replication Performance against Network Line Investment

• drbd Replication

□ Transmits each (Random) Write I/O Request to the Remote Site

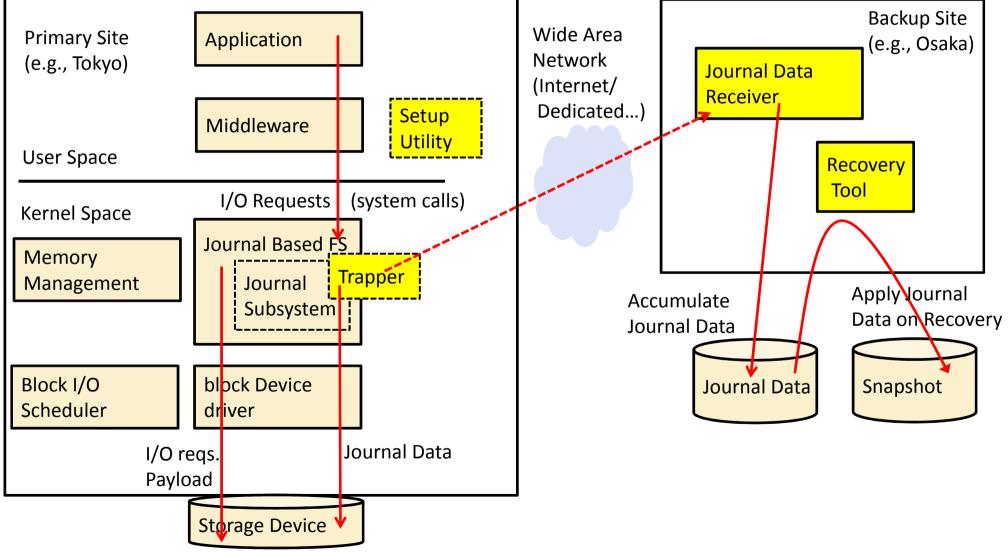
- Inherently Uses Short Packets Poor Throughput
- Secure Replication is Provided by only Protocol C, which waits for I/O Completions at the Remote Site
 - Affects the Source Side I/O Requests Latency


• Idea

□ Make Use of Filesystem Journal

- Naturally Converts Random (Write) I/Os into Sequential I/Os
- Aggregates Multiple (Random) I/O Payloads

✓ Good Place to Implement Tenant Data Replication

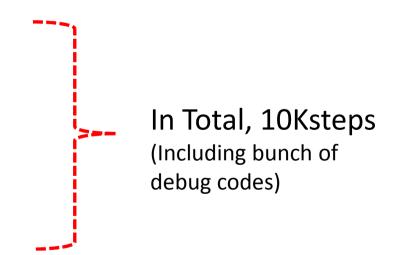


Design -- Overall Architecture

• Overall Architecture

Copyright © 2012 NTT DATA CORPORATION

4. Design and Implementation



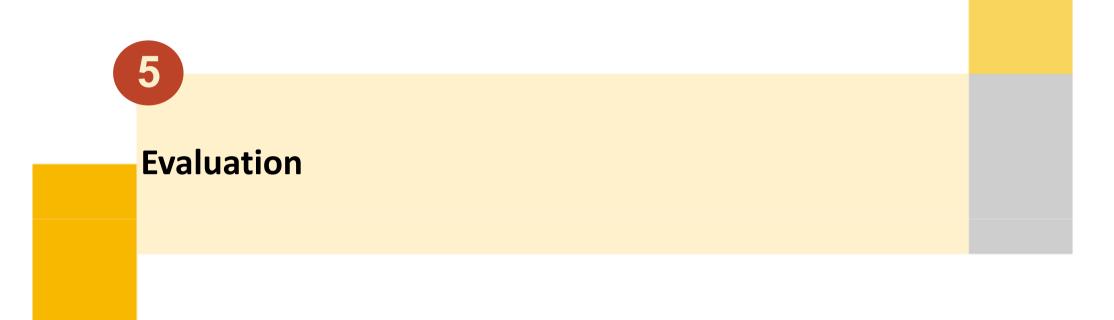
- Principles of Operation : Source Side
 - 1. Take a Snapshot of the Source File System (Partition Image (e.g., sdb1)) and Transfer it to the Remote Site
 - 2. Mount the Source File System
 - Establish (a) Connection(s) with the Remote Site
 - 3. Begin Journal Data Transfer (Both Meta Data and Filesystem Payload)
- Principles of Operation : Receiver Side
 - 1. Receive Journal Data and Store them Locally/Sequentially
- Principles of Operation : On Recovery
 - 1. Apply the Journal Data to the Snapshot

4. Design and Implementation

- Prototype Implementation
 - Base Platform
 - Fedora 14 (x86_64) + Fedora15 kernel (linux-2.6.37-2.fc15)
 - Base Filesystem
 - ext4 + jbd2
- Souce Lines
 - Trapper (Modified jbd2 driver) 4Ks
 - Setup Utility (user land) : 1Ks
 - Receiver (user land) : 4Ks
 - Recovery Tool (user land) : 1Ks
 - c.f. drbd source lines: kernel 30Ks + user land 30Ks

4. Design and Implementation

- Optimizations in Prototype Implementation
 - 1. Use Multiple TCP Connections per Mount


□ Avoid Modification to TCP/IP Protocol Stack

2. Overlapping Local Journal I/O and Transmission over TCP connections

Make Use of Parallelism and Issue Transmissions Frequently

- 3. ext4 Mount Options with respect to Journaling data=ordered(default), data= journal, data=writeback
 - Created a Combined Mode of data=ordered and data=journal, and on the Source side:
 - Write metadata only
 - Transfer both metadata and data to the receiver side.

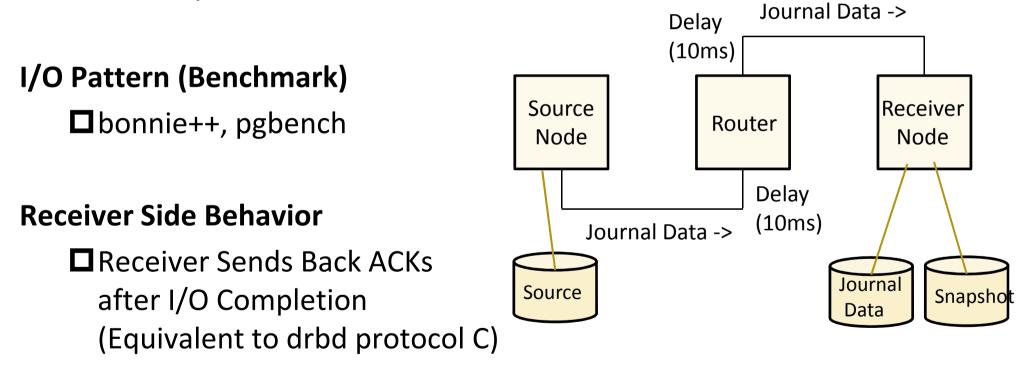
5. Evaluation

Features Test

Content of Files and Meta-data of them are Restored Correctly

Performance Measurement

- □ Hardware/Software
 - Xeon L5520 2P4C, 32GB, 146G SAS HDD (RAID 1) x 2, GbE NIC
 - 2Gbps FC RAID, 146GB Volume (RAID10)
 - Fedora14 (x86_64) + Modified Fedora 15 kernel (2.6.37-2.fc15)
- □ Network Delay Generator
 - Linux netem (i.e., 'tc' command)
- Benchmark
 - bonnie++ : 1.96
 - pgbench (Postgresql 9.1.0), scaling factor= 256, clients=64


5. Evaluation

Emulated Geologically Distributed Environment

□One-Way Latency : 10ms via netem

~ Tokyo - Osaka

5. Evaluation Results : bonnie++

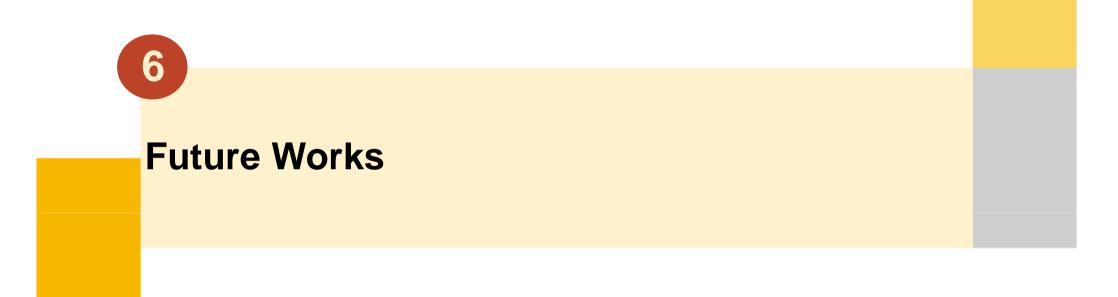
Performance Impact

• 10 Times Faster than Compared to DRBD Protocol C

	Sequential Write (block)	
without Overlap, 1 connection	0.19 MB/s	
without Overlap,10 connections	1.77MB/s	
without Overlap, 500 connections	26MB/s	
with Overlap, 500 connections	33MB/s	
DRBD (Protocol C)	3.3 MB/s	-

10 Times Better !

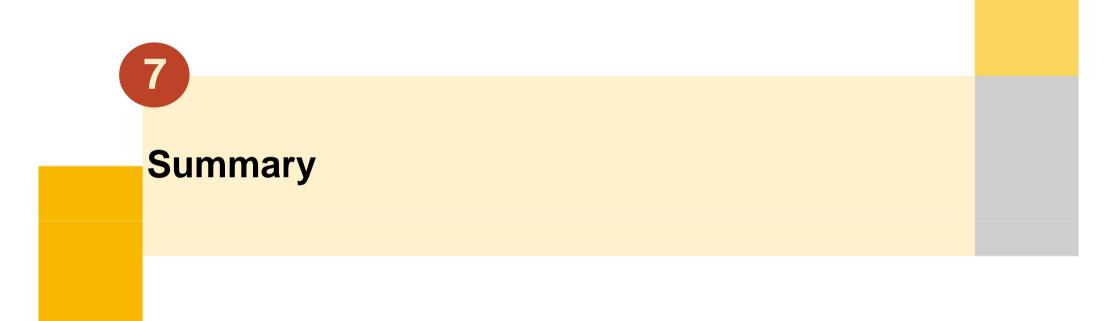
5. Evaluation Results : bonnie++



Performance Impact

• 10 Times Faster than Compared to DRBD Protocol C

	Sequential Write (block)	
without Overlap, 1 connection	0.19 MB/s	
without Overlap, 10 connections	1.77MB/s	
without Overlap, 500 connections	26MB/s	
with Overlap, 500 connections	33MB/s	
DRBD (Protocol C)	3.3 MB/s	
Upper Limit	(GbE = 125MB/s)	
No Replication (Base)	158 MB/s	
In		



6. Future Works

- More Detailed Analysis (Especially, Performance)
 - Packet Level Analysis, etc.
- Further Evaluation
 - Try Other Application Level Benchmarks
- Further Optimization
 - Optimizing Journal Data Transmission Timing
 - Use SSD on the Receiver Side
 - Multiple-Tier Replication Data Chaining
- Use Secure Communication Channel (SSL?)
- Integration with the Inter-Cloud Federation Manager
- Other File Systems (e.g., jfs2, zfs?)

7. Summary

- Proposed Technique
 - A Journal Based File System Layer Tenant Data Replication Method
- Features
 - ✓ Application/Middleware Transparent
 - Suitable for Inter-Cloud Computing Environment
 - ✓ High Performance
 - 10 Times better than drbd
 - Lots of Room for Further Optimization
 - ✓ Generically Applicable to Any Journal Based File Systems
 - ✓ Minimum Implementation Impact

 This work is funded by the Ministry of Internal Affairs and Communications (総務省), Japan.

▶ 平成22年度 情報通信技術の研究開発

(FY2010 R&D of Information Communication Technologies)

http://www.soumu.go.jp/menu_news/s-news/02tsushin03_000024.html

Ⅲ クラウドサービスを支える高信頼・省電力ネットワーク制御技術の研究開発

(R&D of Highly Available and Green Network Control Technology for Cloud Services)

|||-1 高信頼クラウドサービス制御基盤技術

(Technologies for Highly Available Cloud Service Control Foundation)

Thank You !

Copyright © 2012 NTT DATA CORPORATION

Global IT Innovator

NTT DATA GROUP

Q&A

Copyright © 2012 NTT DATA CORPORATION