LSSPS の雲の透過を含む大気透過率検討

小林 智尚[†] 小川 直也[†] 嶋田 進[†] 吉野 純[†] 吉田 裕之[‡] 木皿 且人[‡]

†岐阜大学大学院 工学研究科 〒501-1193 岐阜県岐阜市柳戸1-1

:宇宙研究開発機構 未踏技術研究センター 〒305-8505 茨城県つくば市千現 2-1-1

E-mail: † {kobat, r3130009, sshimada, jyoshino}@gifu-u.ac.jp, ‡ {yoshida.hiroyuki, kisara.katsuto}@jaxa.jp

あらまし電力地上伝送にレーザー・ビームを用いる LSSPS (Laser-type SSPS) は伝送中に起こる大気ガスや雲 によるビーム減衰がシステムの効率に大きな影響を及ぼす.ここでは雲が存在する実大気を対象に,静止衛星軌道 からのレーザー・ビームの大気透過率を推定する数値モデルを開発した.このモデルでは大気中の雲なども十分に 再現されており,雲や大気ガスによる透過率の時系列変化を求めることが出来た.またスカイラジオメーターによ る直達日射強度の観測値からレーザー・ビームの大気透過率を求め,数値モデルによる推定透過率と比較した.そ の結果,数値モデルによる推定結果は観測値を良い精度で再現されていることが示された. **キーワード** LSSPS,大気透過率,スカイラジオメーター,大気放射モデル

Evaluations of Atmospheric Transmittance of LSSPS Laser beam

Tomonao KOBAYASHI[†] Naoya OGAWA[†] Susumu SHIMADA[†] Jun YOSHINO[†]

Hiroyuki YOSHIDA[‡] and Katsuto KISARA[‡]

† Graduate School of Engineering, Gifu University 1-1 Yanagido, Gifu-shi, Gifu, 501-1193 Japan

‡ Aerospace Research and Development Directorate, JAXA 2-1-1 Sengen, Tsukuba-shi, Ibaraki, 305-8505 Japan

E-mail: † {kobat, r3130009, sshimada, jyoshino}@gifu-u.ac.jp, ‡ {yoshida.hiroyuki, kisara.katsuto}@jaxa.jp

Abstract The atmospheric transmittance of the energy transfer laser beam of LSSPS (Laser-type Space Solar Power System) is evaluated with a numerical model. The damping of the laser beam is one of the efficiency factors of the LSSPS. The numerical model computes atmospheric conditions include clouds and simulates the transmittance of the beam from the orbit of a stationary satellite. The simulated transmittance changes widely in time due to weather changes. The field observation of the direct solar irradiance also performed with a skyradiometer and evaluated the atmospheric transmittance of the beam from the observed irradiance. The good agreement of the simulated transmittance with the observed one shows the availability of the numerical model.

Keyword LSSPS, Atmospheric transmittance, Skyradiometer, Atmospheric radiation transfer model

1. はじめに

衛星軌道で太陽光発電を行う SSPS (Space Solar Power System)のうち,その電力をレーザーで地上伝 送する L-SSPS (Laser-type SSPS)の検討が進められて いる(たとえば鈴木ら,2009 [2]). LSSPS では伝送を レーザー・ビームで行うために,地上でのビームの広 がりを押さえることができ,地上局をコンパクトにで きるメリットがある.しかしレーザー・ビームは地上 伝送中,大気ガスや雲によって減衰する.そのためビ ームの大気透過率は LSSPS の効率に係わる要素とな る.熊須ら(2011)[1]は気象予報モデルを含んだ透過率 推定モデルを構築して,雲を含む大気のレーザー・ビ ーム透過率を推定しているが,その精度は十分とは言 い難い.そこで本研究でも L-SSPS の地上伝送に用い られるレーザーの波長,1064 nm 帯を中心にその大気 透過率について,現地観測によってその特性を把握す ると共に,数値シミュレーションによる推定を試みた.

2. 大気透過率の現地観測

2.1. 透過率の観測手法

本研究ではまず現地において, 雲を含む実大気での レーザー・ビーム透過率を推定した.ただし実際にレ ーザーを照射することが不可能であるため,太陽の直 達日射を観測し,その結果から L-SSPS 地上伝送に関 する大気透過率を推定した.

2.2. 観測機器

太陽の直達日射強度観測には,岐阜大学設置のスカ イラジオメーターを用いた.スカイラジオメーターの 外観および観測の概要を図-1 および表-1 にそれぞ れ示す.これは特定の波長帯での直達・散乱日射強度 を計測する.スカイラジオメーターは本来,測定され る直達・散乱日射強度から大気中のエアロゾルの分布 を推定する機器であるが,直達日射強度も計測してい るので本研究で活用した.観測結果の一例を図-2 に 示す.ただし表-1 の仕様に示すとおり,対象となる 1064 nm帯は計測されていないため最も近い波長帯, 1020 nm帯における直達日射強度の観測値を用いた. 1020 nm帯は1064 nm帯と同様に大気中の特定のガス による吸収はなく,同様の特性を示すため,1064 nm 帯の代用として使用できることを確認している.

2.3. 大気透過率の推定

スカイラジオメーターによって観測されるデータ は直達日射強度なので、ここではこの観測値から静止 衛星軌道からのレーザー・ビームの透過率に変換する 必要がある.本研究では下記の Beer の法則に従って透 過率を求めた.

$I = I_0 \exp(C \cdot AM)$

ここで, *I*,*I*₀, *C*,*AM* はそれぞれ, 観測輝度, 大気上端 での日射強度, 減衰係数, エアマス, である. 推定で はまず, 直達日射強度と太陽高度から求めた *AM* から 減衰係数 *C*を求める. この減衰係数は雲の有無にかか わらず, 大気中均一として扱った. 次に静止衛星軌道 からのレーザー・ビームのエアマス *AM* と先ほどの減 衰係数 *C* から, 大気透過率 *I*/*I*₀を求めた.

図-3にスカイラジオメーターによる観測結果から推定した静止衛星軌道からのレーザー・ビームの透過率 を示す.対象期間は2011年9月1日から11月30日までとして,日中の日平均透過率を赤線で示している. 図中の青線は次節で述べる推定結果である.

この期間は日々天候が変化しており、それに伴う、 0%から 90%以上までの大気透過率の大きな変化がこ

図-1 スカイラジオメーターの外観

_	表−1	スカイラシオメーター観測の概要
	設置場所	岐阜大学(北緯34.45° , 統計136.74°)
~	測定波長	315nm, 340nm, 380nm, 400nm, 500nm, 875nm, 940nm, 1020nm, 1627nm, 2200nm
	観測モード	直達光および散乱光
	測定時間	エアマス8以下
Ĩ	計測間隔	1分間隔

の図のように観測で得られている.

3. 数値モデルによる大気透過率の推定

3.1. 推定に用いた数値モデル

本研究では橋本ら(2008) [3]が開発した全天候型大 気放射モデルを静止衛星軌道レーザー・ビーム透過率 推定に適用した熊須ら(2011) [1]のモデルをもとに,よ り高精度に雲が存在する実大気中のレーザー・ビーム 透過率を推定する様に改良した.

LSSPS の地上伝送に係わる大気透過率の推定は,昼間のみならず夜間も必要である.しかし観測による大気透過率推定は昼間のみで可能であり,夜間は不可能である.また地上伝送の地上基地の候補地で大気透過率を推定する場合には,観測ではその地点に測器を設置するなど負担が多いため,観測による推定は現実的でない.そこで任意の地点において大気透過率を推定可能とするためにも数値シミュレーションが必要となる.

橋本らの全天候型大気放射モデル(図-4)は、大 気状態を再現した上で地上に到達する直達・散乱日射 をスペクトルで推定するモデルである.このモデルは 図-3に示すとおり、以下の3つのモデルで構成されて いる.メソ気象予報モデル MM5 (Mesoscale Model fifth generation);ペンシルバニア州立大学(PSU)とアメ リカ国立大気研究センター(NCAR)が開発した気象 モデルで流体力学方程式や熱力学方程式などを元に大 気状態を再現するモデル.大気放射伝達モデル SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine);アメリカ再生可能エネルギー研 究所(NREL)が開発したモデルで,大気ガスによる 特定波長帯の日射吸収などを考慮して,地上に到達す る日射スペクトル強度を推定するモデル,ただし快晴 日のみ解析可能である. 雲水透過モデル TMCW (Transfer Model of Cloud Water);岐阜大学で開発した モデルで,気象予報モデルから得られる雲水粒子など の大気データから雲の透過率を推定するモデル.

全天候型大気放射モデルでは, 雲の発生や移動を含

図-4 全天候型大気放射モデルの構成

む大気状態やその変動を気象予報モデル MM5 で推定 し,その結果から大気放射伝達モデル SMARTS2 で地 上に到達する日射スペクトル強度を推定する.全天候 型大気放射モデルに雲水透過モデル TMCW があるこ とにより,SMARTS2単体では評価できない薄曇り時, 曇天時なども日射強度が推定可能となっている.

本研究では,SMARTS2 による日射スペクトル推定 時に,光源を静止衛星軌道に固定することにより,衛 星からのレーザー・ビーム透過率を推定した.またこ の推定値をさらに補正することにより,推定精度向上 を試みた.

3.2. レーザー・ビーム透過率の推定結果

前節の数値モデルによる,気象予報モデルによる雲 の再現も含め,この雲が存在する大気のレーザー・ビ ーム透過率の推定結果を,観測値と共に図-3に示す. 図中の青線が数値モデルによる推定結果である.図中 赤線で示されている観測結果の通り,天候の変化によ ってこの期間の大気透過率は日々大きく変化している が,数値モデルでは雲の再現も含め,観測値をよく再 現している.

図-5に2011年2月から11月までの期間における, 大気透過率の観測値と数値モデル推定値との相関図を 示す.この図のように,数値モデル推定値が観測値か ら大きく異なる場合もあるが,透過率 0%付近,およ び90%付近では良い精度で再現されていることがわか る.

数値モデル推定値が観測値から大きく異なる原因

図-5 観測および数値モデルにより推定した大気 透過率の相関(1,064 nm 波長帯,日平均,2011年2 月 10日~11月 30日,岐阜大学)

としては,おもに気象予報モデルによる雲の再現精度 に起因しているものと考えられる.今後,このモデル を見直し,さらなる精度改善を試みる.

4. おわりに

本研究では、LSSPS で用いられる、静止衛星軌道か らの地上伝送レーザー・ビームに係わる大気透過率に ついて、数値シミュレーションを用いて再現すると共 に、現地観測データとの比較を通してその再現精度に ついて検討した.その結果、数値モデル推定値は、天 候によって大きく変化する大気透過率を再現している ことが確認できた.また数値モデルによる透過率推定 値が観測値と大きく異なる場合も見られた.この原因 として局地気象モデルによる大気透過率の再現精度が 起因していると考えられ、このモデルの検討を通して、 今後の推定精度改善を試みる.

文 献

- [1] 熊須啓介,吉田裕之,木皿且人,嶋田進,吉野純, 小林智尚, "L-SSPS 地上伝送に関するレーザー大 気透過特性の検討,"第55回宇宙科学技術連合講 演会講演集,1H08,Nov.2011.
- [2] 鈴木拓明,藤田辰人,木皿且人,佐々木進,"JAXA におけるレーザー方式宇宙太陽光発電利用シス テムの研究状況,"信学技報,SPS2009-01,電子 情報通信学会,Jan. 2009.
- [3] 橋本潤,宇佐美景子,小林智尚,吉野純,安田孝志,"大気放射モデル SMARTS2 と局地気象モデル MM5 による全天候型大気分光日射推定モデルの 提案,"太陽エネルギー, Vol34, pp. 57-64, Jul. 2008.