

微細化LSIの信頼性諸問題と その解決策

VLD/SLDM研究会@2012年5月30日 京都工芸繊維大学 ^{工芸科学研究科} 電子システム工学専攻 小林和淑

LSIの微細化はムーアの法則に従い 着々と進行している.本講演では、微 細化したLSIが抱える経年劣化、一時 故障、ばらつきなどの信頼性関連の 諸問題とその対応策について述べる.

■信頼性と可用性

- ばらつきとその対応策(2004-2008)
 - ばらつきを利用した速度と歩留まり向上について
- 一時故障とその対応策(2007-)
 - 主にソフトエラーについて
- 経年劣化(永久故障)とその対応策(2007-)
 - 主にBTIについて

微細化による信頼性の低下

■信頼性と可用性

- ばらつきとその対応策(2004-2008)
 - ばらつきを利用した速度と歩留まり向上について
- 一時故障とその対応策(2007-)
 - 主にソフトエラーについて
- 経年劣化(永久故障)とその対応策(2007-)
 - 主にBTIについて

ばらつきとは?

Kobayashi Lab.

10億個を超えるトランジスタをnmスケール ですべて同一に作るのは不可能

- マイクロプロセッサの動作速度の違いはばらつき

- 速度はほぼ正規分布

3.2GHz 2.5GHz 0GHz 1.5GHz 0.5GHz

- 速く動くプロセッサは数が少ないので高い!
- 速く動くFPGAも数が少ないので高い
- ASICは、同じ速度で動かないと困る

チップ間ばらつき(Die-to-Die Variation)

- チップごとに性能が異なる
- ロット間ばらつき
 - 製造ロットごとにばらつく
- ウェハ間ばらつき
 - ロット内のウェハごとにばらつく

チップ内ばらつき(Within-Die Variation)
 チップ内で場所ごとに性能が異なる

チップ内ばらつきの対策

Kobayashi Lab.

ばらつきを利用して、再構成デバイス(FPGA)の歩留まりと速度を向上させる

Variation-aware Reconfiguration

- 2004年に世界で初めてア イディアを披露+基本特 許取得
- STARCとの共同研究 (2005-2007)
- FPGA内のばらつきを利用 して速度と歩留まりを向上 させる

基本アイディア

(左)従来手法 (右)提案手法 ばらつきを無理やり抑える ばらつきにそのまま乗る

微細化により破綻

波が大きければのりのり

48x48 FPGAチップ

遅延ばらつき測定機構を組み込んだ FPGA を試作
 90nm プロセス

- 従来1つのDFFを2つ持つ
- DFF2 を利用した
 周波数分周が可能
- 面積オーバーヘッド 23 %
 - チップ全体で考えると1%

最小リングによる測定

- 論理ブロック1個を使用したリングオシレータ
- 隣の論理ブロックを1回目の分周(カウンタ)に使用
- 1 チャネル 8 トラック: 1 チップから 47 x 48 x 8 個の 測定結果が得られる

最小リングによる測定

- 隣の論理ブロックですら全く性能が異なる
- ほぼランダムに見える

- NDA によりばらつき幅は提示できない (グラフの軸は任意単位、以降も同様)

ヒストグラムが、正規分布の確率密度関数に測定結
 果の μ,σ を代入した曲線とほぼ一致

ばらつきを利用した経路最適化

- Kobayashi Lab.
 - 右 4 つ・下 4 つの位置の論理ブロックへのパス
 - 右、下の順序と使用するトラックを個々に変更して最 適化
 - 下への部分パスは最小リング発振パスとほぼ一致

速度向上実測結果

- 10 チップに計 810 本を配置配線し個々に最適化
- ほとんどのパスの遅延が減少=速度向上
 - 765/810 (95%)で遅延減少

Kobayashi Lab.

- ただし期待値と、実際の効果の相関が低い

速度向上実測結果

Kobayashi Lab.

- 測定パス≒信号通過パス
 - 相関が低い要因
 - 測定時はリングオシレータ構造となる
- 歩留まり向上効果は大きい
 - 81.6 % \rightarrow 99.0 %
 - 50.1 % \rightarrow 81.0 %

target frequency (MHz)

ばらつきのまとめ

- 微細化によりばらつきは増大傾向
 - SOIなどによりばらつきを減らす試みもあり
 - バルクはいかんともしがたい(∝1/√LW)

対処法

- ばらつきを利用した再構成回路の速度と歩留 まり向上
 - ばらつきに応じて、回路構造を変更する
 - 再構成回路(FPGA)で実現
 - ばらつきは製造後の測定により求める
 - パスの最適化で、歩留まりが50%から80%に向上

■信頼性と可用性

- ばらつきとその対応策(2004-2008)
 - ばらつきを利用した速度と歩留まり向上について
- 一時故障とその対応策(2007-)
 - 主にソフトエラーについて
- 経年劣化(永久故障)とその対応策(2007-)
 - 主にBTIについて
- ディペンダブルVLSI

一時故障とは?

- なんらかの内乱、外乱要因による一時的な誤動作
 - 電源を入れ直せば元に戻る
- 内乱要因
 - 内部動作によるノイズ
 - 電圧ドロップによるタイミング違反
- 外乱要因
 - 粒子線によるソフトエラー

ソフトエラーとは?

- - α線(Heの原子核)
 - パッケージ内の放射性不純物
 - 高エネルギー中性子
 - 宇宙より
 - 航空機では影響大 - 1万mで100倍
 - 熱中性子
 - ¹⁰Bと反応
 - 重イオン(Heより大きな原子)
 - 宇宙で問題

発生電荷によりメモリ(FF, SRAM)の記憶値が反転

ソフトエラー?実体験

- ハワイ行きの飛行機
 - iPod touch (初代)の、ボリュームが誤動作
 - 再起動で復活

- 日本原子力機構(JAEA)の加速器見学時
 - デジカメが誤動作
 - 何もできなくなる。電源OFFすらできない
 - バッテリーを抜いて対処
- 大阪大学核物理センター(RCNP)の休憩室
 - プラズマテレビの画面半分がブラックアウト
 - 電源入れ直して復活

ソフトエラーの種類

- Kobayashi Lab.
 - Single Event Upset(SEU)
 - ・粒子線がSRAMやFFに衝突、保持データが
 直接反転
 - Single Event Transient(SET)
 - 粒子線が組み合わせ回路に衝突、パルスを
 生成する
 - クロック周波数が高い程エラーになりやすい
 - Multiple Cell Upset(MCU)
 - 電子/正孔が複数のノードに蓄積
 - 一度に複数のメモリ/FFの保持 データが反転する

ソフトエラー対策

- メモリ: Error Check Code(ECC)
 - SRAMにパリティビットを付加し、<mark>SEU</mark>(1ビット反転)を訂正
 - MBU(同一ワードの複数ビット反転)では訂
 正不可
- 順序回路: 多重化

- 回路を多重化して多数決
- 組み合わせ回路からのエラーパルス
 (SET)は遅延素子(て)により除去
- 2つのFFが反転すると誤動作する

■多重化はMCUに脆弱

FFのエラー対策: BISER FF

- C-elementとWeak keeperによりラッチにおけ るSEUによる誤動作を防止
 - 多数決はLatch x 2 + Weak keeper
 - 三重化よりも省面積
 - 遅延素子(τ)は一つだけで済む

BISER FFの問題点

Kobayashi Lab.

- BISERは、C-Element上のSETパルスに弱い
 - 二つのLatchが同時に反転
 - パルス取り込みによるエラー率はクロック周波数とともに上昇.

250psのSETパルス@1GHz = 1/4の確率

BCDMR FF(特許出願中)

- C-elementを二重化, weak keeperをクロスカップル
- C-elementからのSETパルスは片方のラッチのみに 取り込まれる
- クロック周波数が高くなってもソフトエラー率が下がる

65nm CMOSプロセスによる評価

Kobayashi Lab.

■ 3つの回路を1チップ上に集積化(2009/08 TO)

- 2.1 mm x 4.2 mm
- 65nm bulk CMOS process(富士通イーシャトル)

中性子源によるソフトエラー測定

- 大阪大学RCNPの加速器を利用
- 中性子は加速してもエラー数が少ないため、28チップを同時に測定
- 10万年の中性子量を1時間に加速(3.7x10⁸)

- α線では、D-FFの70万倍の強度
- 中性子では、たった10倍に...

- MCU(複数FFの同時反転)に脆弱なレイアウトが原因

Furura et. al., Symp. on VLSI Cir, 2010

MCU問題

- 冗長化FFはSEUに対しては強いが、MCUに対しては 脆弱
- プロセスの微細化に伴いMCUの発生率が増大
 - 高エネルギー中性子で顕著

三重化FFでエラーを防ぐには?

Kobayashi Lab.

多重化したラッチを近傍に配置すると、複数ビット反転 (MCU)による誤動作が起こりやすい

素子間の距離とMCU発生率

Kobayashi Lab.

MCUとSEU発生率をD-FFア レイで調査

- たった、0.3umの差でMCU発生 率は1/4
- 少しでも距離を離せばMCUは起こらない

Latch	最短距離	# SEUs	# MCUs	# M/# S	
Master	0.73 µm	541	88	16 %	
Slave	1.03 µm •	493	19	3.8 %	
	1/	'4			

MCUを起こりにくくするためのFP

- 最初のフロアプラン(FP)では、一 部のCritical Comp.の距離短い
- 修正後のFPでは、最小距離を2.8
 倍とした
 - 回路ブロックの入れ替えで対処したため、 面積オーバーヘッドはO

		最短距離
BCDMR FF	改善前	0.77 µm
	改善後	2.13 µm

100MHzでの中性子実験結果

Kobayashi Lab.

R. Yamamoto et. al., Trans on Nuclear Science, vol.58, no. 6, pp. 3053 - 3059 39

ー時故障まとめ

- 一時故障には、冗長化(多重化)が必須
 - 冗長化は面積、遅延、電力オーバヘッド大
- MCUにより、多重化が無効に
 - レイアウト構造を工夫することにより、防ぐことが可能(65nm)
- さらなる微細化、低電圧化
 - FINFET, SOI SER∝x1/10
 - 低電圧化 SER∝ exp(-Qcrit/Qs), Qcrit∝CV
- 多重化しても、複数反転が起こる。

- 多重化+検出技術
 - 多重化が反転したことを検知してアラート

■信頼性と可用性

- ばらつきとその対応策(2004-2008)
 - ばらつきを利用した速度と歩留まり向上について
- 一時故障とその対応策(2007-)
 - 主にソフトエラーについて
- 経年劣化(永久故障)とその対応策(2007-)
 - 主にBTIについて

経年劣化

■使っていくうちに性能が劣化していく

- 英語では、wear-out(着古す)
- どれくらい持てばよい?
 - 耐久消費財なら10年?携帯機器なら5年?

微細化により、BTI (Bias Temperature Instability) による劣 化が問題に

BTIによる経年劣化

Kobayashi Lab.

- - バイアスと温度によって加速される劣化
 - PMOS: Negative BTI (NBTI)
 - NMOS: Positive BTI (PBTI)
 - 長期間のストレスによりトランジスタが 劣化
 - 10年で10%
- ■酸化膜中の欠陥が劣化に関与
 - Permanent(戻らない)成分とRecoverable(戻る) 成分
 - DCストレスとACストレスでは様相が異なる

MOSトランジスタの断面図

C880	1 Year	10 Years
High	5.93%	8.71%
Low	5.06%	7.42%
室温	3.38%	4.94%

温度による劣化度合 Y. Cao. Trans. on VLSI 2010

BTIの二つの説

- Kobayashi Lab.
 - Reaction-Diffusion
 (R-D) Model
 - By M.A. Alam (Univ. of Illinoi)
 - Si-HのHが外れH₂になり拡 散し、Permanent成分に
 - 酸化膜の欠陥が増える

- Trap De-Trap (T-D) Model
 - By H. Reisinger, T. Grassser (Univ. Wien)
 - RTNの集合がBTI
 - 酸化膜の欠陥は増えない
 - 時定数の大きい(>数年)欠陥 がPermanent成分に見える

- IRPS(毎年4月開催)で、数年前から激しい議論
 - 個人的な見解だが、T-D Modelのほうが素直に受け入れられる
 - R-DからT-Dへの乗り換えも多数

R-D (Reaction-Diffusion) Model

Kobayashi Lab.

x: Si-SiO₂界面に発生したトラップ

- ゲートにストレスが
 印加されると、Si-H
 の結合が遊離
- Si-SiO₂界面にイン
 ターフェーストラップ
 - (結合していない電 子対)を生成
- トラップがキャリアを 捕捉

RTN (Random Telegraph Noise)

Kobayashi Lab.

●:ゲート酸化膜の欠陥への捕捉
 ○:ゲート酸化膜の欠陥からの放出

■製造時にゲート酸化 膜に出来る欠陥が キャリアを捕捉・放出 ■ 欠陥1個へのキャリ アの捕捉、放出で閾 値電圧が動的・離散 的にばらつく

NBTIとRTNの類似点

Kobayashi Lab.

•H.Reisinger, "NBTI: Recent Findings and Controversial Topics", IRPS'10 Tutorial. ⁴⁸

Trap De-Trap Model

- Kobayashi Lab.
 - NBTIの物理的な原因はRTNと同様に最初から存在するゲート酸化膜の欠陥
 時定数は10⁻⁹~10⁹s(数十年間)の範囲に分布
 - 長期的に閾値電圧が変動する=永続的な劣化

 $\Delta V_{\text{TH}_{\text{TD}}} \propto \phi[A + \log(1 + Ct)]$

発振器のRTN観測結果

Kobayashi Lab.

- RO+分周器による 測定回路
 - 65nm CMOSで試作
- Ring Osc.の電圧を 下げると周波数が2 値変動

T. Matsumoto et. al., Workshop on Variability Modeling and Characterization, 2011

リーク電流を用いたNBTI測定回路

Kobayashi Lab.

- OFFリーク電
 流でNBTI劣化
 を測定
 - リークはVthに敏感
- Assist Circuit
 - ストレス時にたまっ た電荷を逃がす
 - 電流計のレンジが 変わらない

T. Matsumoto et al.: Jpn. J. App. Phys. 50 (2011) 04DE06

繰り返し測定による劣化測定結果

Kobayashi Lab.

ightarrow毎回回復している。 短時間測定ではPermanent成分は見られない

回復を利用して寿命を延ばす

経年劣化とその対策

- BTIは、製造時の欠陥により生じる
 - BTIは不可避の劣化

Kobayashi Lab

- RTNを引き起こす酸化膜中の欠陥による
 - Trap De-Trap Model
 - 多数のRTNの積分がBTI
- |Vgs|>>0で、劣化、|Vgs|==0で回復
 - 劣化と回復は非対称

対処法

- なかなか劣化しないが、すぐに回復

■ 時々回復させることで寿命延長が可能

まとめ

- LSIの微細化は急ピッチで進んでいる
 - 微細化により、信頼性が大きな問題
- ■信頼性問題への対処法
 - 対ばらつき
 - チップ内ばらつきに応じた配置の最適化
 - 対一時故障
 - 回路の多重化+検出技術
 - 対経年劣化
 - 回路を休ませて寿命延長
 - 小林研究室の発表文献については、ホームページをご覧ください

本研究に携わっていただいた京大、京都工繊 大の学生に感謝します。

