経済・社会・環境が持続可能なスマートシティ構築・運用のための評価手法の研究(その2)
～超スマート社会コンセプト“Software Defined Society”の実装・評価についての一考察～

A study on a Method of Implementation (; Assessment) for Sustainable Development on the Smart Cities
- Part2 ; “Software Defined Society” based on the concept of Beyond ”Smart society” -

2016年8月26日

小倉 博行† 馬奈木 俊介‡ 千村 保文†† 石野 正彦†††

† 三菱電機株式会社, 九州大学大学院, 電子情報技術産業協会スマート社会ソフトウェア専門委員会
‡ 九州大学大学院, 経済産業研究所
†† 沖電気工業株式会社, 電子情報技術産業協会スマート社会ソフトウェア専門委員会（委員長）
††† 文教大学
発表内容

1. はじめに
 ～我が国そして世界が抱える社会的・構造的課題とスマートシティ・ビジネス

2. 人工知能等を利活用した超スマート社会の実装コンセプト“Software Defined Society”
 2.1. JEITA スマート社会ソフトウェア専門委員会＜= The Capital I-model 2.0＞
 2.2. JST 超スマート社会のデザインREALITY 2.0

3. 人工知能等が経済・社会・環境に与える影響=人々の「豊かさ」の評価指標の検討
 3.1. 新国富指標=包括的富指標(IWI)導入の提案

4. 人工知能等を利活用した持続可能なスマートシティ実装評価モデルの構築
 ＜= The Capital I-model 4.0 ?＞

5. おわりに
 ～Assessment for Sustainable Development on the Smart Cities
 with Creating Shared Value; CSV

（注）IoT,ビッグデータ,人工知能(AI)等の新たなICTを「人工知能等」と略す
第4次産業革命によって実現される社会ニーズ

- アイ等の技術革新・データ利活用により、今までは対応しきれなかった「社会的・構造的課題＝顧客の真のニーズ」に対応可能に。
- グローバルに広がるこの新たなフロンティアを誰が発掘・獲得するかの競争へ。

1. はじめに～我が国そして世界が抱える社会的・構造的課題とスマートシティ・ビジネス

【出所】2016年4月27日 経済産業省産業構造審議会中間整理「新産業構造ビジョン」～第4次産業革命をリードする日本の戦略～
2. 人工知能等を利活用した超スマート社会の実装コンセプト

2.1. JEITAスマート社会ソフトウェア専門委員会

図1. 日本(JEITA)提案：スマートシティのアーキテクチャモデル＜The Capital I-model＞

社会インフラ情報の利活用基盤モデル；I-model = The Capital I-model

- I-modelの「I-」は社会インフラを意味する“Infrastructure”の頭文字
- 情報系シンボルを表す「i-」と区別し、大文字(Capital)の「I-」で表記
- “Capital”＝「社会インフラ“資本”」

<table>
<thead>
<tr>
<th>社会インフラ情報の利活用基盤モデル</th>
<th>I-model = The Capital I-model</th>
</tr>
</thead>
<tbody>
<tr>
<td>・I-modelの「I-」は社会インフラを意味する“Infrastructure”の頭文字</td>
<td></td>
</tr>
<tr>
<td>・情報系シンボルを表す「i-」と区別し、大文字(Capital)の「I-」で表記</td>
<td></td>
</tr>
<tr>
<td>“Capital”＝「社会インフラ“資本”」</td>
<td></td>
</tr>
</tbody>
</table>

２．人工知能等を利活用した超スマート社会の実装コンセプト “Software Defined Society”

２．JEITAスマート社会ソフトウェア専門委員会

図2．JEITA “Software Defined Society” の概念

◆社会インフラ分野のソフトウェアを中心とした情報利活用基盤〈The Capital I-model〉を整備し、ICTを活用した災害に強い「安全・安心・快適・便利」な社会システムの構築

◆産業インフラのハードウェア上で柔軟な構成変更が可能なソフトウェアにより社会インフラを構築する“Software Defined Society”という考え方

①機能のソフトウェア化

ソフトウェア

ハードウェア

ソフトウェア

ハードウェア

②構成のソフト化（柔軟性向上）

国の設備

県

市

災害時

国の設備

県

市

市

市

市

市

市
2. 人工知能等を利活用した超スマート社会の実装コンセプト

2.2. JST超スマート社会のデザインREALITY 2.0

Software Defined Society

REALITY2.0サービスプラットフォームの実現
・ 機能のエコシステムを動的に定義、構成可能（実体定義レンズ）

【出所】岩野 和生他, CRDS-FY2015-SP-02「IoTが開く超スマート社会のデザイン—REALITY 2.0—」国立研究開発法人科学技術振興機構 研究開発戦略センター システム・情報科学技術ユニット March 2016. pp11-12
2. 人工知能等を利活用した超スマート社会の実装コンセプト “Software Defined Society”

2.2. JST超スマート社会のデザインREALITY 2.0

Software Defined Society

【出所】岩野 和生他, CRDS-FY2015-SP-02「IoTが開く超スマート社会のデザイン—REALITY 2.0—」pp24-25，国立研究開発法人科学技術振興機構 研究開発戦略センター システム・情報科学技術ユニットMarch 2016.
2. 人工知能等を利活用した超スマート社会の実装コンセプト

2.2. JST超スマート社会のデザインREALITY 2.0

REality 2.0 の実現に向けた
ヒトや集団の行動原理の理解、社会適用の受容性
の検討が必要となる。
そのため、

SSH(Social Sciences and Humanities) と
ELSI(Ethics, Legal, and Social Issues)
を踏まえた科学技術の推進や自然科学者と人文・社会系研究者の連携・融合
の促進も期待される。

○政府研究開発投資の経済効果

IoT による経済効果は非常に大きいが、上記の予測はIoT単体の効果に過ぎない。IoT
も含めた情報通信技術は汎用的な性格を持っており、情報通信技術が情報通信産業を
通じて、あらゆる産業に影響を与え、さらにその影響が多くの産業へと拡大していくと予
想される。こうした効果を予想することは従来行なわれてこなかったが、黒田らが
「ICT/IoT に係る科学技術政策の社会的・経済的影響の評価を目的とした多部門相互
依存一般均衡モデルの構築」において新たな試みを始めている。

黒田昌裕ほか, “ICT/IoT に係る科学技術政策の社会的・経済的影響の評価を目的とした多部門相互依存一般均衡モデルの構築”
日本経済学会2015年度秋季大会
2. 人工知能等を利活用した超スマート社会の実装コンセプト “Software Defined Society”

Canadian Business Journal (By Robert Tercek) “Welcome to the Software Defined Society”

◆「シェア経済」を実装するコンセプト
= “Software Defined Society”

◆米Uber社「ライドシェアサービス」、米Airbnb社「民泊サービス」、
bitcoin「仮想通貨:決済機能のソフト化（software-defined currency）」
サービス」、米Niantic社・ポケモン社「Pokémon GO」(software-defined game)サービス」などの「シェア経済」を発展させ、
災害対応等の新たな価値創出（イノベーション）を可能とする”人と
ICT（人工知能等）と企業と都市との共創するエコシステム（生態系）”
= 「シェア社会」

⇒人工知能等の新たなICTの
社会インフラ情報系『I-ソフトウェア』（デジタル世界）のビジネスと
社会インフラ系『I-ハードウェア』（現実世界）のビジネス
とを統合した
ソフトウェアエコシステム（生態系）＝“ Software Defined Society”

（出所）http://www.cbj.ca/welcome-to-the-software-defined-society/、Oct.2015。
CBJは、bitcoinなどの仮想通貨による決済機能のソフト化（software-defined currency）などを事例として紹介している。
直接交渉による解決「コースの定理, 所有権, 取引費用, 補償金」

○コースの定理
ドナルド・コースが提案した「コースの定理」は、「取引費用」が存在しないことや、「完全情報」を仮定すれば、市場メカニズムにより当事者間の直接交渉による解決が社会全体の利益（=住民の利益 + 企業の利益 - 費用負担）を最大化することを示す。

⇒ ソフトウェアエコシステム=「Software Defined Society」は、この「コースの定理」の成立条件である「取引費用ゼロ」「完全情報」を実現して「シェア経済」「シェア社会」の展開を可能とする。

○コースの定理の問題点

<table>
<thead>
<tr>
<th>問題点</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>権利の配分が与える影響</td>
<td>権利の配分の変更によって、汚染者の限界便益分析と被害者の限界損失曲線が変化しないことが、コースの定理が成り立つ前提である。</td>
</tr>
<tr>
<td>取引費用</td>
<td>コースの定理が成立するのは、利害関係をもつ当事者間の交渉が契約に到達し、施行するのに不都合がない場合のみである。</td>
</tr>
<tr>
<td>情報の不完全性</td>
<td>交渉に関わる主体の限界便益・損失についての情報が不完全な場合には、効率的交渉は見込めない。</td>
</tr>
</tbody>
</table>
総務省 AI ネットワーク化検討会議 報告書2016
『AI ネットワーク化の影響とリスク - 智連社会 (WINS) の実現に向けた課題 - 』

第3章 AIネットワーク化に関する評価指標

2 AIネットワーク化の進展が社会にもたらす影響に関する評価指標

3 豊かさや幸せに関する評価指標

＜検討の方向性＞
○ 豊かさや幸せを評価するための指標としては、GDP等の経済統計には限界がある。GDP等の経済統計だけではなく、非金銭的、非市場的な要素も考慮に入れることができるような指標の設定に向け検討を進めることが望まれる。
○ 豊かさや幸せの感じ方が個人の価値観に大きく左右され得ることに鑑みると、指標の設定に当たっては、主観的な評価と客観的な評価のバランスを考慮することが望まれる。
○ 指標をひとたび設定した後にも、適時に見直すことが重要であり、そのための手続きを用意しておくことが必要である。

＜参考となる指標＞
○ 次に示す評価指標も参考にしながら、適切な評価指標の策定に向けて検討を進めていくことが期待される。
【豊かさや幸せに関連する評価指標の例】
◆ より良い暮らし指標 (BLI)
◆ 国民総幸福量 (GNH)
◆ 経済的福祉指標 (MEW)
◆ 人間開発指数 (HDI)
◆ デジタル経済・社会指標 (DESI)
◆ 潜在能力アプローチ
3. 人工知能等が経済・社会・環境に与える影響=人々の「豊かさ」の評価指標の検討

共通価値の創造(Creating Shared Value;CSV)
－社会価値(福利厚生)と経済価値(インセンティブ)の双方を追求する－

ソーシャルで投資価値を最適化する仕組みが必要

（出所）名和高司, “CSV経営戦略—本業での高収益と、社会の課題を同時に解決する” 東洋経済新報社, Oct.2015。
新国富指標とは何か

- 経済の持続可能性を測る指標＝経済が持続可能な発展（開発）の経路上にあるか否かを知るための指標

- 人工資本のみならず、自然資本や人的資本を含む国レベルの資本資産ストックの価値の会計

- 資本アプローチにもとづいている。すべての資本の間に完全な代替性を仮定する（弱い持続可能性アプローチ）。

- 金銭単位で表現される。
3.1. 新国富指標=包括的富指標(IWI)導入の提案

表1. 経済の持続可能性に関する2つの資本アプローチとスマートシティ実施手法との関係

<table>
<thead>
<tr>
<th>アプローチ</th>
<th>強い持続可能性</th>
<th>弱い持続可能性</th>
</tr>
</thead>
<tbody>
<tr>
<td>経済学的アプローチ(資本アプローチ)</td>
<td>福利厚生の源泉であるストックに着目し、その変化を測定。経済指標として従来計測できてきた人工資本ストック(GDP), 教育や健康といった人間的資本ストック, 環境や資源といった自然財資本ストック, その他福利厚生に貢献しうる有形無形資本すべてを包括。</td>
<td></td>
</tr>
<tr>
<td>持続可能性指標 統合指標</td>
<td>世界銀行が提供するGenuine Savings</td>
<td>国連大学・国連環境計画が提供する新国富指標＝包括的富指標(IWI)</td>
</tr>
<tr>
<td>資本の代替可能性</td>
<td>不完全な代替可能性を仮定する (臨界自然資本の概念)</td>
<td>完全な代替可能性を仮定する</td>
</tr>
<tr>
<td>資本の補完性</td>
<td>補完性を考慮する</td>
<td>補完性を考慮しない</td>
</tr>
<tr>
<td>環境容量</td>
<td>考える</td>
<td>考えない</td>
</tr>
<tr>
<td>理論的な背景</td>
<td>生態経済学 進化経済学</td>
<td>主流派経済学 新古典派経済学; 経済成長論, 厚生経済学, 資源経済学, 環境経済学</td>
</tr>
<tr>
<td>指標の単位</td>
<td>物量, 物量と金銭のハイブリッド</td>
<td>金銭</td>
</tr>
<tr>
<td>経営学的・工学的アプローチ(スマートシティ実装手法)</td>
<td>人とICT(人工生命等)と企業と都市との共創 <生物学的アプローチ></td>
<td>人とICT(人工知能等)と企業と都市との共創 "Software Defined Society" <物理学的アプローチ></td>
</tr>
</tbody>
</table>

3.1 新国富指標=包括的富指標(IWI)導入の提案

人々が豊かに幸せに（＝スマートに）暮らすための課題解決策＜経済学的アプローチ＞

⇒効用＝都市サービス＝人々の“豊かさ”は、主に消費から発生する
⇒世代をつうじて消費の可能性を減少させないようにする
⇒前の世代から受け継いだ生産基盤を損なわずに次の世代に引き渡す

☆持続可能な開発目標<SDOs;フロー指標> ⇒【一例】○○市民の“豊かさ”＝再生可能エネルギーの都市○○

効用

消費

消費

生産

所得

投資

“Direct Benefits”

“Capital Feedback Effects”

【有形）資本資産

① “人工資本” ⇒【一例】“太陽光パネル”, “人工知能等”
② “人的資本” ⇒【一例】“節電行動”
③ “自然資本” ⇒【一例】“再生可能エネルギー”

【無形）可能性資産

都市インフラのストック効果の成熟度指標<ISO/PWI37153-Process>
⇒【一例】“○○市民のソーシャル・キャピタル”

図4. スマートシティの経済学モデル＜富生成の三資産モデル＞

【出所】九州大学 主幹教授 都市研究センター長 馬奈木俊介、「新国富指標導入の提案」，2015.10.22。
4. 人工知能等を利活用した持続可能なスマートシティ実装評価モデルの構築

IWI, SDGs, ISO37120, ISO/TS37151, ISO/NWIP37153及び都市公会計との関係

收集型指標(IWI)で経済・社会・環境が持続可能なスマートシティ実装評価モデル

A Smart City System of systems model: Smart Grid inspired 3D model
5. おわりに～Assessment for Sustainable Development on the Smart Cities with Creating Shared Value; CSV

【課題】
我が国と世界が抱える社会的・構造的課題である
人口減少下での環境・資源問題や災害リスクに直面する成熟経済の持続可能性の確保

【解決策】
◆「シェア経済」を発展させた“人とICTと企業とが共創するエコシステム”（＝共通価値の創造; CSV ≡ “Software Defined Society” ≡「シェア社会」）を実装する手法として，経済学的アプローチを用いたスマートシティ実施手法を提案（表1，図4）。
◆経営学的・工学的アプローチを用いて，新たなICT（IoT，ビッグデータ，人工知能）を効果的，効率的かつ受容可能に利活用した都市の経営評価モデルとして，包括的富指標(IWI)を用いた経済・社会・環境が持続可能なスマートシティ実装評価モデルの構築（図5）。< = The Capital I-model 4.0 ? >

スマートシティ実装評価手法の比較

<table>
<thead>
<tr>
<th>実装評価手法</th>
<th>従来のICT利活用評価手法(EA)</th>
<th>新たなICT利活用評価手法(EA+IWI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>評価指標</td>
<td>個別指標</td>
<td>統合指標</td>
</tr>
<tr>
<td>会計手法</td>
<td>単式簿記</td>
<td>複式簿記</td>
</tr>
<tr>
<td>相互運用性</td>
<td>IT層と社会インフラ層毎に個別評価</td>
<td>IT層と社会インフラ層とを統合評価</td>
</tr>
<tr>
<td>の階層</td>
<td>社会インフラ分野毎に個別評価</td>
<td>社会インフラ分野全体を統合評価</td>
</tr>
<tr>
<td>社会インフラ</td>
<td>人工資本のシステム階層毎に個別評価</td>
<td>人工資本・人的資本・自然資本のシステム階層全体を統合評価</td>
</tr>
<tr>
<td>分野</td>
<td></td>
<td></td>
</tr>
<tr>
<td>資本資産</td>
<td></td>
<td></td>
</tr>
<tr>
<td>のシステム階層</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you

Q & A