
Slice Extension of Network Infrastructure into
Virtualization-enabled Terminal Device

Coordinating Network Management System with Terminal Device Management
System in Network Virtualization

Yohei Katayama
NTT Network Innovation Laboratories

Takehito Yamamoto
the NTT Bizlink, Inc.

Kazuhisa Yamada
NTT Network Innovation Laboratories

Akihiro Nakao
the University of Tokyo

ABSTRACT
This paper proposes a new management scheme that ex-
tends the network infrastructure slices into end terminal de-
vices. In our proposal, end terminal device management is
independent of network infrastructure management. In ad-
dition, we propose a procedure for coordinating the terminal
management system with the network infrastructure man-
agement system.

Keywords
Network Virtualization, End Terminal Device (End Sys-
tem), Management System

1. INTRODUCTION
Network services provide applications to the network

user and many new applications will appear to satisfy
new user demands. These new applications will require
more advanced functionality from the network infras-
tructure. To satisfy these requirements, the network in-
frastructure must become more flexible and support the
swift creation and modification of various network func-
tionalities. Network virtualization is a key technology
for realizing such flexibility due to its deep programma-
bility[1]. It enables any functionality to be realized in
the network infrastructure as a slice, i.e. a set of vir-
tual network resources. However, some functionalities
such as naming, addressing, and routing must be im-
plemented into not only the network infrastructure but
also end terminal devices such as a desktop computer,
which is outside the traditional infrastructure.

Such functionalities can be implemented by preparing
a slice that involves the cooperation of end terminal de-
vice(s) and the network infrastructure. This approach,
slice extension, extends slice reach into end terminal
devices. Slice extension offers several advantages:

• A new service or application can be realized by
preparing the appropriate slice, which includes the
resources of end terminal devices as necessary.

• The same program and/or protocol operates over
the whole slice including end terminal devices.

The authors propose the basic design and coordina-
tion procedure for slice extension. Our proposals enable
the developer of a slice to develop and operate func-
tionalities and protocols over the slice in an end-to-end
manner.

2. SLICE EXTENSION

2.1 Requirements and architecture
The authors assume an end terminal device that can,

via virtualization technologies such as KVM[2] and en-
capsulation technologies such as GRE[3], provide a vir-
tual node (VN) and a virtual link (VL). An end terminal
device that has this capability is called the virtualization-
enabled terminal device (VT) in this paper.

A consideration of slice extension shows that VT re-
source management must be independent from network
infrastructure resource management because these two
entities have, in general, different owners, and because
network infrastructure responsibility does not extend to
VTs in practice. On the other hand, the configuration
of a VT-supported slice and the programs installed onto
the slice must be set by the developer of the slice so that
the user of a VT can receive services or applications on
the slice with appropriate setups. Therefore, our re-
source management scheme provides each VT with its
own management system (namely terminal device man-
agement system, or TMS) that operates independently
from the management system of the network infrastruc-
ture (namely network management system, or NMS);
note that TMS cooperates with NMS. NMS instantiates
and manages the original part of the slice that contains
only network elements (NEs) (namely NE-part slice),
while TMS realizes the extended part of the slice that
contains its VT (namely VT-part slice). Fig.1 presents
this slice extension architecture.

1

VN4	

VN2	

VN3	

VN1	
 VN5	

NMS	

NE4	

NE2	

NE1	

NE3	

VT	

Responsible region of
network infrastructure	

VL5	

Data channel	

Data channel	

Slice instantiation	
 Slice extension	

Extended part of slice
(VT-part slice)	

Original part of slice
(NE-part slice)	

NMS: Network Management System
NE: Network Element
VT: Virtualization-enabled Terminal device
VN: Virtual Node
VL: Virtual Link	

VL3	

VL4	

VL1	

VL2	

Control channel	

Figure 1: Architecture of slice extension

Fig.2 shows a brief example of installed programs
(“Developer’s API” and “Developer’s protocol stack”)
in slice extension following Fig.1. The programs in the
VT-part slice are programmed by a slice developer so
that the programs in the NE-part slice can cooperate
with them.

An example of developer’s protocol stack is an end-
to-end label switched path. In traditional approaches,
a label switched path is terminated at the edge of the
providers network. In the slice extension approach, la-
bel switched paths can be extended up to an end ter-
minal device and may be controlled with a process in a
VT-part slice through the developer’s API.

A process in a VT-part slice can also be programmed
and delivered by a slice developer. Such processes can
cooperate with those of another VT, therefore it is easy
to implement distributed computation using the resources
of multiple VTs.

2.2 Basic design and coordination procedure
Fig.3 presents our proposed basic design and coordi-

nation procedure for slice extension. The figure consists
of function blocks and message sequence arrows. Table
1 summarizes the message sequence in Fig.3. TMS con-
trols and manages the hypervisor (HV), such as KVM[2],
in its VT, while NMS controls and manages the HVs

NE1	

VL5	

VT	

VL5	

VN5	

Developer’s API	

Developer’s
protocol stack	

process	

port	

VL1	
 VL2	

VN1	

Developer’s
protocol stack	

port	
 port	

Data channel	

port	

NE: Network Element
VT: Virtualization-enabled Terminal device
VN: Virtual Node
VL: Virtual Link

: NE-part slice
: VT-part slice

to VN2	

to VN3	

Figure 2: Installed programs in slice extension
(following Fig.1)

in the NEs, such as VNode[4], of the network infras-
tructure. TMS manages the resource block that can
be assigned to a slice. TMS instantiates the VT-part
slice in cooperation with NMS using the interface de-
fined between NMS and TMS (Seq:2-2, 2-4 in the fig-
ure). TMS follows the specification of the VT-part of
the slice which is defined by the slice developer (e.g.
XML format text in [4]). The specification includes a
locator for the installed program that is programmed
and stored in the network infrastructure by the slice
developer.

Fig.4 is an example message format of VT-part slice
specification. At first, we describe the elements in the
format. “Slice-design” element determines its scope.
“Slice-spec” element has slice specification. “Sliverdef”
element describes the specification of VN (“nodeSliver”
in the example) and VL (“linkSliver” in the example).
“Structure” element describes topological information,
i.e. bindings of virtual ports (“vport” in the exam-
ple). In this example, the “nodeSliver” element whose
“name” attribute is “VN1” has the value “ super” as
“type” attribute. The value means that the compo-
nent specification is defined in the NE-part slice. The
example has a “bootImage” parameter so that the de-
veloper of the example can designate from where VT
gets the OS image which the developer designed. “Re-
sources” element describes the amount of resources to
be assigned to a VT-part slice. In the example, a cre-

2

Developer
of slice	

User
of VT	

NMS	
 TMS	

HV	
HV	
HV	

Seq:1-1	

Seq:1-2	
 Seq:1-2	

Seq:0	
Seq:2-1	

Seq:2-2	

Seq:2-4	

Seq:2-3	
 Seq:2-5	

Data channel	
 Data channel	

Responsible region of
network infrastructure	

NMS: Network Management System
NE: Network Element
TMS: Terminal device Management System
VT: Virtualization-enabled Terminal device
HV: Hypervisor

VT	
NE	

Figure 3: Basic design and coordination proce-
dure

ated VN (“VN5”) has 1 CPU core, x86 64 instruction
set architecture, 2G-size memory, boot OS downloaded
from a bootImage server and connectivity to the VN in
the NE-part slice “VN1” through a VL (“VL5”). A cre-
ated VL (“VL5”) has 1G bandwidth, 1024 byte buffer
for burst traffic and shaping function. The VL is im-
plemented by GRE, IPSec, IPv4 and Ethernet.

3. RELATED WORK
To the best of our knowledge, no existing work has

proposed a slice extension mechanism for implementing
any functionalities into end terminal devices.

Work by Wilson et. al [5] introduced a mechanism
to install protocol stacks into an end terminal device
by using a kernel module and a user space daemon.
The mechanism takes the approach of not instantiating
any virtual node. Instead, it specifies the functionalities
implemented into the protocol stack of the end terminal
device.

Other research[6] proposed a VT control mechanism
for network virtualization. In the context of the re-
search, network virtualization means virtualizing sev-
eral physical routers into a single logical router and the
goal of the study is a logical router that can track VM
migration across multiple networks in an efficient man-
ner by using a centralized flow controller, like Openflow,
in the network infrastructure.

Another work[7] showed a design to federate multi-
ple networks between ends in order to provide a slice
across networks. It relies on centralized coordinators,

Table 1: Summary of message sequence in Fig.3

Phase Seq.# Description

Preparation Seq: 0 User of VT sets up resource block
that can be assigned to a VT-part
slice.

Instantiation
of NE-part
slice.

Seq:1-1 Developer of the network infras-
tructure defines the specification
of a NE-part slice and that of a
VT-part slice, and puts them into
NMS.

Seq:1-2 NMS issues command to HV(s) to
instantiate a NE-part slice.

Instantiation
of VT-part
slice.

Seq:2-1 User of VT sends request to TMS
triggering TMS cooperation with
NMS.

Seq:2-2 TMS sends to NMS a request for
obtaining the specification of a
VT-part slice.

Seq:2-3 NMS issues a command to a HV
to modify the NE-part slice at the
edge of the network infrastruc-
ture.

Seq:2-4 NMS submits to TMS a response
that includes the specification of
the VT-part slice.

Seq:2-5 TMS issues a command to a HV
to instantiate the VT-part slice.

namely brokers, and the paper made no mention of end
terminals.

End-to-end connectivity was proposed for multiple
federated networks including end terminals, but a func-
tionality implementation scheme for end terminals was
not[8].

4. CONCLUSIONS
We proposed a new management scheme the allows

slices in a network infrastructure to be extended into
virtualization-enabled terminal devices. We introduced
a coordination mechanism for slice extension. Our pro-
posals also offer slice extension into application servers
in a data center, mobile phones in wireless system and
other types of terminal devices and systems.

In future work, we will implement the proposals and
evaluate their effectiveness in a comparison against ex-
isting procedures.

5. ACKNOWLEDGMENTS
A part of this research has been executed under the

Commissioned Research of National Institute of Infor-
mation and Communications Technology (NICT).

6. REFERENCES
[1] Akihiro Nakao. Network Virtualization as

Foundation for Enabling New Network
Architectures and Applications. IEICE Trans.
Commun., E93.B(3):454–457, 2010.

3

<?xml version="1.0" encoding="UTF-8"?> <!-- delivered from NMS to TMS -->
<slice-design>
 <slicespec class="VT-part_slice">
 <sliverdef>
 <linkSlivers>
 <linkSliver name=”VL5">
 <vports><vport name="e1"/><vport name="e2"/></vports>
 <resources>
 <resource key="bandwidth" value="1G"/>
 <resource key="burstSize" value="1024"/>
 <resource key="performanceIsolation" value="shaping"/>
 <resource key="protocol" value="802.3,IPv4,GRE,IPsec"/>
 </resources>
 </linkSliver>
 </linkSlivers>
 <nodeSlivers>
 <nodeSliver name=”VN5">
 <vports><vport name="vp1"/></vports>
 <instance type="SlowPath_VM">
 <resources>
 <resource key="cpumode" value="dedicated"/>
 <resource key="cpu" value="1"/>
 <resource key="arch" value="x86_64"/>
 <resource key="memory" value="2048"/>
 </resources>
 <params>
 <param key="bootImage" value="http://{bootImageServer}/bootImage.img"/>
 </params>
 </instance>
 </nodeSliver>
 <nodeSliver name=”VN1" type="_super">
 <vports><vport name="vp1"/></vports>
 </nodeSliver>
 </nodeSlivers>
 </sliverdef>
 <structure>
 <bind>
 <vport slivername=”VN5" portname="vp1"/>
 <vport slivername=”VL5" portname="e1"/>
 </bind>
 <bind>
 <vport slivername=”VL5" portname="e2"/>
 <vport slivername=”VN1" portname="vp1"/>
 </bind>
 </structure>
 </slicespec>
</slice-design>

Figure 4: A specification example

[2] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm : the Linux Virtual Machine
Monitor. Proceedings of the Linux Symposium,
Ottawa, Ontario, 2007, pages 225–230, July 2007.

[3] D. Farinacci, T. Li, S. Hanks, D. Meyer, and
P. Traina. Generic Routing Encapsulation (GRE).
RFC 2784 (Proposed Standard), March 2000.
Updated by RFC 2890.

[4] Akihiro Nakao. Corelab and VNode. 8th GENI
Engineering Conference (GEC8), July 2010.

[5] Michael Wilson, Fred Kuhns, and Jonathan
Turner. Network Access in a Diversified Internet.
In Ian Akyildiz, Raghupathy Sivakumar, Eylem
Ekici, Jaudelice Oliveira, and Janise McNair,
editors, NETWORKING 2007. Ad Hoc and Sensor
Networks, Wireless Networks, Next Generation
Internet, volume 4479 of Lecture Notes in
Computer Science, pages 1204–1207. Springer
Berlin / Heidelberg, 2007.

[6] Fang Hao, T. V. Lakshman, Sarit Mukherjee, and
Haoyu Song. Enhancing dynamic cloud-based
services using network virtualization. SIGCOMM
Comput. Commun. Rev., 40(1):67–74, January

2010.
[7] Nick Feamster, Lixin Gao, and Jennifer Rexford.

How to lease the internet in your spare time.
SIGCOMM Comput. Commun. Rev., 37(1):61–64,
January 2007.

[8] N. M. Mosharaf Kabir Chowdhury, Fida-E Zaheer,
and Raouf Boutaba. iMark: an identity
management framework for network virtualization
environment. In Proceedings of the 11th
IFIP/IEEE international conference on Symposium
on Integrated Network Management, IM’09, pages
335–342, Piscataway, NJ, USA, 2009. IEEE Press.

4

