Enhancing OpenFlow Actions to
Offload Packet-In Processing

H. Farhady, P. Du, A. Nakao
U-Tokyo
NV 2014

Introduction

e Software-Defined Networking (SDN)
— Not a new concept (e.g., Active Nets)
— Provides a couple of APIs such as OpenFlow
— Focuses on the programmability of the control plane
— Data plane proposal is hardware-centric

* Cons
— Programmability of the data plane? (e.g., Southbound APIs)

e Contribution

— To relax the D-plane programmability constrains of
OpenFlow

OpenFlow D-plane Constraints

* OpenFlow: <match, action> processing
— Matching fields: Predefined (e.g., Source/Dest. IP)
— Actions: Predefined (e.g., Drop, Forward)
— Have to replace switch for every OpenFlow Update
— TCAM = hardware-centric data plane

* TagFlow[1] a tag based classification/forwarding
method

* User-defined matching fields
— Tagging packets at the network edge
— Switching using labels at the core

* User-defined actions
— Adding arbitrary actions to the switch

3
[1] Hamid Farhadi, Akihiro Nakao, “TagFlow: Efficient Flow classification in SDN”, accepted in IEICE Transaction on Communications, 2014.

TagFlow Architecture

mEEENy
,e**" " Edge”"te.,

. “‘llll...
3
Server

Server

]
—D
Server

Tag based
flow
Classification .

Classify and
Insert Tag

Main objectives of TagFlow

* Free the core from classification load
— Offload the classification to the edge
— Apply one-field classification at the core

e Use the freed capacity for
— Application layer classification at the edge
— Running User-Defined Action at the core

Evaluation

* PC based Experiments
— To show the functionality

* FLARE based Experiments
— To show the performance

Sample User-defined Actions

* Portscan detector(PSD)
— Detects machines scanning other machines

* BotMiner detector(BHD) [1]

— Uses PSD to detects machines scanning other
machines

— Co-clusters scanner nodes against low traffic nodes

e P2P Plotter [2]

— Co-clusters long lasting nodes against low traffic
nodes

[1] Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D
Approach to Network Control and Management. In Proceedings of ACM Computer Communications Review, 2005 7
[2] T. Yen and M. K. Reiter. Are Your Hosts Trading or ploting? Telling P2P File-sharing and Bots Apart. In Proceedings of IEEE ICDCS, 2010

Architecture 1: C-Plane app

o O

Northbound
Apps

A
A

A Detection

@ sensing
K Controller /

Control Plane

Data Plane

®
Packet OpenFlow
Switch

Architecture 2: D-Plane

[Controller }
Control Plane

Data Plane

User-Defined
Packet Switch oads
— SR >
Component Actions m

_ Data Plane Enwronment
A Detection
@ sensing

Architecture 3: NFV app

4 N

A O

Switch VM Action VMs
(Virtual Appliances)

Packet

A
N

__ Host 0S %

@ HostNIC A Detection
() Guestvm @ Sensing

10

Overhead of User-Defined Actions

SDN NFV
C-plane Overhead D-plane Overhead Virtual Appliance
(ms)[1] (ms) (ms)
Port scanner 7.196 0.000001 0.001280609
Detector
BotMiner 15.421 0.000004 0.001630215
Detector
P2P Plotter 11.775 0.000004 0.001312178

Overhead of C-plane apps are in milli-second scale, NFV appliances are in micro-second scale
and User-Defined Action are in nano-second

[1] Seungwon Shin et al. "FRESCO: Modular Composable Security Services for Software-Defined Networks.” NDSS'13, USA, 2013.
11

Ease of Programmability

C-plane app D-plane UDA
Algorithm Middlebox[1] NOX [1] (C + config LoC)
(CLoC) (Python LoC)
TRW-CBJ[2] 1060 741 196 (181+15)
Rate Limit[3] 991 814 225 (205 + 20)

D-Plane based User-Defined Actions are easier to program than their equivalent
implementations on Middlebox and C-plane

[1] Revisiting Traffic Anomaly Detection Using Software Defined Networking. In Proceedings of Recent Advances in Intrusion
Detection, 2011.

[2] Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning worm infections. In: RAID. pp. 59-81 (2004)

[3] Williamson, M.M.: Throttling viruses: Restricting propagation to defeat malicious mobile code. In: ACSAC (2002)

FLARE

* |s a Fully Programmable Software Switch
 Combination of NFV/SDN

e Provides coexisting virtual programmable
switches

* Click based programming Model

* Using many core general purpose processors
* 4 x 10G SFP+ ports

* Packet Generator: Xena Packet Generator

13

OpenFLow vs TagFlow (1-core)

10
9 I
8 _—
7 _—
6 _—
a & OpenFlow
o) 5 -
© i TagFlow
4 — -
Forwarding
3 SE— — I
2 — _—
: N J i}
0 R I J I I I I]
64B 128B 2568 512B 1024B 1514B

Packet-size

TagFlow forwarding is about 40% faster than OpenFlow at the core network

TagFlow + User-defined Actions

9 /
i /'/
7
26
0
Ocg -
4 ..
3 W=pSD 5128
2 PSD: Port Scanner Detector Action —==PSD 1514B
1 BHD: Bot Miner Detector Action =>&=0FF 512B
OFF: OpenFlow Forward Action ==BHD 1514 +5 cores
0 T T T T |
1 2 3 4 5 6
CPU Cores

15

User-Defined Actions added to TagFlow switch can perform faster than OpenFlow forwarding

OpenFlow + User-defined Actions

10 W
9 - <B=pSD 512B
g | ==PSD15148 /
==0FF 5128 /
/ ==BHD 1514 /{
v 6 +5-cores
o
S /
O 5
4 1*4
3 /
2 PSD: Port Scanner Detector Action
BHD: Bot Miner Detector Action
1 ~— OFF: OpenFlow Forward Action
0 T
1 2 3 4 5 6
CPU Cores

User-Defined Actions added to OpenFlow software switch have minor performance degrigde

Conclusion

The is a need for a programmable D-plane
SDN actions can be user-defined

We showed user-defined actions are easy to
program

We showed user-defined action are fast
enough to be considered as a feasible choice

Questions

