TRANS CLOUD: Design Considerations for a High-Performance Cloud Architecture Across Multiple Administrative Domains

Rick McGeer, HP Labs

For the TransCloud Team: HP Labs, UC San Diego, University of Victoria, Northwestern University, University of Amsterdam, TU-Kaiserslautern, Princeton University, PlanetWorks, PlanetLab, GENI, G-Lab, DFN, NLR, GLIF

August 1, 2010
• TransCloud: A Cloud Where Services Migrate, Anytime, Anywhere In a World Where Distance Is Eliminated
 – Joint Project Between GENICloud, iGENI, G-Lab
 – GENICloud Provides Seamless Interoperation of Cloud Resources Across N-Sites, N-Administrative Domains
 – iGENI Optimizes Private Networks of Intelligent Devices
 – G-Lab contributes networking and advanced cloud resources
“The Cloud” offers the prospect of ubiquitous information and services…BUT…

- Performance of Cloud services Highly Dependent On Location
 - Of End-User, Applications, Middle Processes, Network Topology
 - Of Cloud Data, Compute Processes, Storage, etc

Why?
- Performance of Legacy Protocols Highly Dependent on Latency

Therefore:
- If the Clouds Are Too Far Away, Performance Will Be Very Severely Restricted

Ergo
- Clouds Needs To Be Close To Service Sites OR
- Networks (And Clouds) Must Be Designed To Eliminate Distance
Context 2: Living With Legacy Protocols Over Commodity Internet vs Creating Alternatives

- Legacy Is There For a Reason
 - Compatibility
 - Fairness
 - Congestion Avoidance

- Therefore: Distributed Cloud
 - Minimal Latencies Over Legacy Internet To Anywhere/Everywhere

- Therefore: Private Internal Networks
 - Eliminate Latency Dependence Internally
 - Use Aggressive Internal Transport/Application Protocols
 - TIA-1039, Reliable Blast UDP, Lambda RAM
 - Flow Control Enabled
Context 3: No Cloud Lives Everywhere

- Clusters are much easier to build than points-of-presence
- Most commercial clouds today have only a few sites
- Therefore: cloud service providers want to run services across *multiple* clouds
 - Need a cloud standard that offers identical interfaces over multiple domains
- Inspiration: the web
 - Standard protocol for sending documents
 - Standard document format
 - Permission and access control on a site-by-site, page-by-page basis
Context 4: General Considerations

- Major Cloud Use Case: Big Data, Distributed Collection, Must Live With Available Networks
 - Smart Cities
 - Sensor Nets
- Best Case: Create Private Network
 - Owning Optical Fiber
 - Create High Performance Wireless Point-to-Point Links
- Many Data Intensive Science Projects, Including
 - High Energy Physics (e.g. LHCNet, Science Data Network, I-WIRE)
 - Atmospheric Sensing Apparatus
 - Ocean Observing (e.g., Project Neptune)
 - Distributed Radio and Optical Telescopes
 - Telemedicine
Premise: Compute Where Data Lives!

- Computation is Ubiquitous and Easy To Obtain
- Programs Are Small and Easy to Transmit
- Most Programs \textit{Reduce} Data
- Often Data Is Large and Challenging To Transmit
 - E.g., Jim Gray distributing SDSS by sending computers by FedEx!
- \textbf{Solution} -- Send Programs to Data
- Requires
 - High-performance, low-latency network
 - Common API’s and operating environments
 - \textit{Lightweight, user-based federation}
What do we need to make this work?

• Advanced Networking and Caching
 – Firm guarantees on bandwidth and latency on a per-application basis
 – Application support at Layer 3 and Layer 2
 – *Means: Private Network where possible*

• Access to platforms wherever data lives
 – *But data lives everywhere!*
 – No organization has Points of Presence (PoP)s everywhere
 – Need for an individual to be able to make arrangements with a cloud service provider, anywhere, efficiently, minimal overhead
 – *Common form of identity*
 – *Common identity not required*
 – *Common AUP not required*
What do we need to make this work?

• Ability to instantiate and run a program anywhere
 – Common API at each level of the stack
 – IaaS/NaaS (VM/VN Creation)
 – PaaS (guaranteed OS/Programming environment)
 – OaaS (Standard Query/Data Management API)

• Easy, Standard Naming Scheme
 – I need to know the name of my VM’s, logins, store etc without asking
Solution – TransCloud

• Introducing TransCloud Prototype
 – An Early Instantiation of the Architecture
 – A Distributed Environment That Enables Component and Interoperability Evaluation
 – A Testbed On Which Early Experimental Research Can Be Conducted
 – An Environment That Can Be Used To Explain/Showcase New Innovative Architecture/Concepts Through Demonstrations
TransCloud Today

Approx 40 nodes at 4 sites, 10 Gb/s connectivity
• Sites at
 – HP Labs, Palo Alto
 – UC San Diego
 – Northwestern
 – Kaiserslautern

• Tomorrow (*literally!*)
 – Amsterdam

• Connectivity provided by:
 – CAVEWave, StarLight, NetherLight, DFN, National Lambda Rail, Global Lambda Integrated Facility
Demo

(code by Chris Pearson and Chris Matthews, University of Victoria, data store from Paul Muller (Kaiserslautern) and Michael Zink(U Mass))
• Multi-site query example
 – Internet data repository (packet traces)
 • Kaiserslautern, Germany (thanks to Paul Muller)
 • UC San Diego (thanks to Michael Zink)
 – Run an analysis job at each site
 – Transmit the results back to HP Labs
 – Run summary job at HPL
• What’s being demonstrated?
 – Ability to run *multi-site* job
 – Sending programs to data
 – Prototype of analysis of coming world of sensors
<table>
<thead>
<tr>
<th>Institution</th>
<th>Open Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSD</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>HP</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>Kaiserslautern</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>Northwestern</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>No Open Jobs</td>
</tr>
</tbody>
</table>

Transcoding Statistics
Several Basic TransCloud Concepts

- High Performance Highly Distributed Cloud Architecture Allowing Processes Across Multiple Administrative Domains Integrated With Dynamic Networking (GENI)
- Scalable Lightweight Federation Processes
- Services Are Based On Processes That Can Be Executed Anywhere World-Wide (Location Independent)
- Top Level Services Can Be Accessed Via Public Internet
- Core Processes and Data Streams Leverage Sophisticated Communication Services Not Merely “Best Effort” Commodity Internet
TransCloud Distributed Query Demo

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVic</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>UCSD</td>
<td>Status of Open Jobs at site UCSD</td>
</tr>
<tr>
<td>HP</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>Kaiserslautern</td>
<td>Status of Open Jobs at site Kaiserslautern</td>
</tr>
<tr>
<td>Northwestern</td>
<td>No Open Jobs</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>No Open Jobs</td>
</tr>
</tbody>
</table>

Transcoding Statistics
Introduction – TransCloud

- TransCloud Architectural Components
 - High Level APIs
 - A High Performance General Programming Environment
 - High Levels of Virtualization Based on VMs and Network Abstractions
TransCloud Equals

- IaaS Based on Slice-Based Federation Architecture (GENI/FIRE Standard)
 - Current instantiation: MyPLC over Eucalyptus
 - Want: ports to OpenStack, etc.
- Identity: X.509 certificates and ssh keys
 - TransCloud sites agree to accept these as forms of identity
 - *Which* to accept up to the site
- Standard DNS Infrastructure
 - `<instanceName>..<sliceName>..<siteName>..<authorityName>..trans-cloud.net`: experiment interface
 - e.g. `hadoop22.queryTest.hplabs.genicloud.trans-cloud.net`
 - `<siteName>..<authorityName>..trans-cloud.org`: admin interface
 - `hplabs.genicloud.trans-cloud.org`
 - Each authority does its own DNS.
• Experimental QaaS (Distributed Hadoop/Pig)
• User-done PaaS (some stock images, but the usual tools for building your own…)

TransCloud Equals..
Integration with GENI

- Programmer and User Interface to Cluster Control is MyPLC
 - Cluster version of PlanetLab control interface
 - Used for a number of clusters worldwide, including VICI project in US

- Mechanics of cluster control done by Eucalyptus
 - Single Eucalyptus user – MyPLC
 - Users log in to MyPLC, issue directives, MyPLC effectuates by issuing appropriate Eucalyptus commands
TransCloud Architecture

<table>
<thead>
<tr>
<th>Distributed Pig</th>
<th>Distributed Hadoop</th>
<th>NaClRePy</th>
<th>GENI Eucalyptus</th>
<th>1039/RBUDP…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slice Federation</td>
<td>Flow Primitives</td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
<td></td>
<td>Architecture</td>
<td></td>
</tr>
</tbody>
</table>
TransCloud Distributed Query
On April 15 (about) we were attacked by the Romanian Black Hats
- Stock VM had a privileged user with a guessable password
- Came with the VM…
- Attack was a worm attack to recruit bots for botnets
- We were alerted when a third-party site saw worm probes coming from us

Solution: shut it down, fix it, bring it up

The Fix:
- Use MyPLC (PlanetLab) as the controller
- Login only by ssh key, X.509 cert (GENI standard)
- Ssh login only from specified IP addresses (EC-2 standard)
- Authorized users can add whitelisted IP’s
- Currently enforced by iptables, but we’ll add support into OpenFlow

Running final pre re-launch tests now
Goals for 2011

- Complete integration with MyPLC
- Integrate the ProtoGENI Resource Specification (RSpec)
 - Modified to make sense for clusters
- Integrate the GENI standard Authorization-Based Access Control (ABAC)
- Add utility to permit users to manually adjust connectivity rules
 - Integration with ProtoGENI RSpec
Advancing TransCloud

- If You Are Interested In Using This Environment, Contact Us

- If You Would Like To Contribute Resources, Contact Us
• THANKS!

• Questions????