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Logically-centralized controller in SDN networks |

@ A centralized controller cannot handle all the incoming request from

switches as the network grows in SDN networks.

@ One way to alleviate this concern is to distribute the state and/or
control computation over multiple controllers while keeping a

logically-centralized architecture [11, 7].
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Figure: Logically centralized controller
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Logically-centralized controller in SDN networks |

@ The physical network is divided into multiple control domains.

@ Each controller manages network states (e.g. network topology,
switch, port, link, and host information) inside the domain and shares
them between controllers as a “global network view”.

@ All SDN controllers need to maintain consistent view of global
network in order to make a correct routing decision.
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Consistency models |

There are two types of consistency models.

@ Strongly consistent:
maintains a consistent global network view by synchronizing each of
them immediately when a controller receives the changed network
states inside same control domain.

o Eventually consistent:
provides fast responsiveness. Each controller makes the consistent
global network view by synchronizing at some later point.
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Consistency models: Eventually consistent
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Consistency models |

@ Strongly consistent:
Overhead and delay of the controller are imposed, which the
responsiveness is limited.

o Eventually consistent:

It reacts faster and can cope with higher update rates. However, it is
a possibility to use the inconsistent global network view.
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Proposed scheme [12]

We propose a controller placement model based on traffic locality [12].

We focus on traffic flow between switches to reduce an inconsistent global
network view.
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Figure: Controller placement model based on traffic volume
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Clustering algorithm

@ To minimize an inconsistent probability between controllers, we need
to make an assignment of switches to controllers such that routing
decision on each flow can be made by as small number of controllers
as possible.

@ In order to achieve such assignment of switches to controllers, we
identify a cluster of switches such that fair amount of traffic flow
remains inside the cluster and assign the switches belonging to the
cluster to the same controller.
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Infinite Relational Model (IRM)

@ In order to make such clusters of switches, we employ Infinite
Relational Model (IRM) [6].

e IRM [6] is a nonparametric Bayesian model that discovers relational
structure in data sets as a set of clusters, where the number of
clusters is not required to be fixed in advance.

@ IRM divides a set of whole entities into a number of clusters
automatically choosing an appropriate number of clusters, where a
good set of partitions allows relationships between entities to be
predicted by their cluster assignments.

@ We used IRM in order to cluster switches into groups with high traffic
volume.
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Simulation model

@ We compare an inconsistent probability that controllers have to use
the consistent global network view form proposed assignment with
random assignment.

@ We used a full-mesh topology that connects 13 nodes representing 13
Prefectures in Japan (Tokyo, Kanagawa, Saitama, Ibaraki, Tochigi,
Gumma, Chiba, Osaka, Kyoto, Hyougo, Shiga, Nara, and Wakayama).

@ We create the traffic matrix by using the gravity model.

M; M;
1)
2 (
Dj

Tj=6G

where G = 1 is constant of gravitation, M; and M; are the population
volume of j and j, Dg- is the square of the distance between / and j.
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We propose an assignment that reduce the inconsistent probability from a
switch to the switch that assigned a different controller.

@ We identify a cluster of switches such that fair amount of traffic flow
remains inside the cluster and assign the switches belonging to the
cluster to the same controller by using IRM.

@ Simulation study shows that the proposed assignment reduces the
inconsistent probability.

Future work includes (1) extensive evaluation model (topology, traffic) and
(2) dynamic traffic.
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Understanding human mobility

@ Understanding the human mobility is crucial for resource management
in mobile networks.
@ Individual mobility versus Mass mobility.
o Individual mobility:
Understand individual mobility from the trajectory data of a user.
Aggregate individual mobility data to asses the population in an area.
e Mass mobility:
Understand mass mobility directly from the population data in an area.

@ GPS-equipped portable devices can record geographical position at
each moment and transmit their trajectories to a collecting server.

@ Increasing availability of large amounts of trajectory data provides
useful knowledge.
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Trajectory dataset

Geolife project [16]

@ 182 users in a period of over five years (from April 2007 to August
2012).

@ Sequence of time-stamped points, each of which contains the
information of latitude, longitude and altitude.

@ 17,621 trajectories with a total distance of 1,292 ,951kilometers and a
total duration of 50,176 hours.

@ 91.5 percent of the trajectories are logged in a dense representation,
e.g. every 1-5 seconds or every 5—10 meters per point.

# latitude,longitude,0,altitude,Date,Date(string),Time(String)
40.000031,116.326378,0,492,39902.0362037037,2009-03-30,00:52:08
39.999924,116.326475,0,492,39902.0362615741,2009-03-30,00:52:13
39.99978,116.326453,0,492,39902.0363194444,2009-03-30,00:52:18

40.002051,116.324416,0,322,39902.0378819444,2009-03-30,00:54:33
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Discretization in spatial-temporal domains

Resource management in cellular mobile networks; Granularity of
spatial-temporal discretization are the geographical area, cell, and the
control cycle of resource management in the cellular mobile networks.
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Discretization in spatial-temporal domains
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Figure: A sample of spatio-temporal movements of trajectory data
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Discretization in spatial-temporal domains
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Figure: Discretization of trajectory pattern
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Sequential pattern mining [1]

o Let | ={i,i,...,in} be a set of all items.

@ A sequence S is an ordered list of items, denoted by (e1, e, ..., €m),
where ¢; is an item, i.e.,, ¢ C/for1 <j<m.

@ A sequence S; = (ajay...am) is called a subsequence of another
sequence Sp = (b1 by ... by), denoted as S; C Sy, if Sp includes S,
i.e., if there exist integers 1 < ji < jo < -+ < jm < n such that
a] = bjl,az = bjz,...,am = bj,,-
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Frequent sequential pattern

A sequence database SDB is a set of tuples (sid, S), where sid is a
sequence identifier and S is a sequence.

@ A tuple (sid,S) is said to contain a sequence S,, if S, is a
subsequence of S, i.e., S; C S.

@ The support of a sequence S, in a sequence database SDB is the
number of tuples in the database containing S, i.e.,
support(S;) =| {(sid,S) | ({sid,S) € SDB) A(S.C S)} |.

e Given a positive integer £ as the support threshold (we call minsupp),
a sequence S, is called a frequent sequential pattern in sequence
database SDB if the sequence is contained by at least £ tuples in the
database, i.e., supportspg(Ss) > €.
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Sequential pattern mining algorithms

@ Many sequential pattern mining algorithms have been proposed such
as PrefixSpan [9], SPAM [2], LAPIN-SPAM [15], PRISM [4], and
BIDE [14].

@ Those algorithms except BIDE produce all frequent sequential
patterns with a minimum support threshold minsupp.

o BIDE produces frequent closed sequential patterns, thereby producing
more compact and efficient results.

frequent closed sequential pattern

We call S, a frequent closed sequential pattern if a sequence S, is a
frequent sequence pattern and there exist no supersequence of S, with the
same support; there exists no S such that S, C S;, and

sup(Sb) = sup(S).
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Closed sequential pattern

Table: An example sequence database SDB

Sequencel |[<a,b,c>

Sequence? |<a,b,c,d>

Sequence3 [<a,b,c,e>

Suppose that minsupp = 3.
o PrefixSpan extracts all frequent sequential patterns: (a), (b), (c),

(a,b), (b.c), (ab,c) (a), (b), (c), (a,b), (b,c).

@ BIDE extracts only (a,b,c) as a frequent closed sequential pattern.
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The algorithm of the PrefixSpan with minsupp = 2.

Output a, b, ¢ pattern
Sequence data /

2.c
1.d

[acd,abc,cba,aab]

1. acd a1 result
2. abc c:1 a4
3.cba ab:2
4. aab — ac:2
b:3

3.ba | b1 c:3
Number of occurrences :

Figure: PrefixSpan
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BIDE

BIDE [14] employs a closure checking procedure when it grows a frequent
prefix sequence in order to assure that it is genuinely closed.

@ It performs two kinds of checking for this: forward checking and
backward checking.
o If a sequence S; = (a1a2...am) is non-closed, it can be extended to
S! by adding an item &’ in three ways:
Q S, =1{(a1...amd") and sup(S’) = sup(S),
Q S.={(a;...d'an) and sup(S’) = sup(S), and
Q S, =(da1...am) and sup(S’) = sup(S).
@ In the first case, an item &’ occurs only after the prefix sequence S
and we call S" a forward extension sequence of S.

@ In the latter two cases, an item a’ occurs before the end of prefix
sequence S and we call S’ backward extension sequence of S.
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Proposed method [3]

The proposed method [3] consists of three steps: (1) discretization of
trajectory data, (2) extraction of frequent trajectory patterns, and (3)
prediction of future trajectory.
o |t discretizes trajectory data in spatial-temporal domains.
@ It mines them to make a frequent trajectory pattern database by
employing sequential pattern mining algorithms: PrefixSpan or BIDE.
@ |t predicts the future trajectory from the frequent trajectory pattern
database. It computes a similarity score between two trajectory
patterns to predict the future trajectory.

November 2019 31/73
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Trajectory mining

Once we represent trajectory data as sequential pattern, we extract
frequent trajectory patterns using sequential pattern mining algorithms
such as PrefixSpan or BIDE.
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Trajectory prediction

Once we obtain frequent trajectory pattern database, we identify the
frequent trajectory pattern most similar to the trajectory of interest.
@ The similarity score score(f;, p) :
score(f;, p) = min dist(, p, ).
a

@ The index of most similar frequent trajectory pattern mfp(F, p) :

mfp(F,p) = arg min score(f;, p).
allf,eF

fia FED D O
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Trajectory prediction

The predicting algorithm exploits a set of frequent trajectory patterns.
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Dataset: Geolife project [16]

We use GPS trajectory dataset collected in Geolife project by 178
users [17].

@ This dataset contains 17,621 trajectories.

@ These trajectories were recorded by different GPS loggers and
GPS-phones.

@ GPS trajectory of this dataset is represented by a sequence of
time-stamped points, each of which contains the information of
latitude, longitude and altitude.

Kohei Shiomoto (Tokyo City University) Data Mining for Network Management in Mc November 2019 35 /73



Experiments setting

We divide Trajectory dataset into mining data and verification data.
@ Frequent trajectory patterns are derived using mining data.

@ Verification data is used to evaluate the prediction accuracy of the
proposed trajectory prediction method.

= .
.. Model Trajectory
T g | — building | pattern
T |
Trajectory Validation Model Validation
data data Validation result

Figure: Experimental setting.
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Number of trajectory patterns
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We proposed a human mobility prediction method for resource
management in mobile networks.

@ We propose a similarity score between two trajectory patterns to
predict the future trajectory pattern.

@ We evaluate the proposed method using real data set (GeoLife
project) [17].

@ We confirm that BIDE produces more efficient set of frequent
trajectory patterns than PrefixSpan while the proposed method
predicts the mobility with the accuracy of 45 % to 70 %.

Future work includes (1) aggregation of human mobility data for resource
management in mobile networks, (2) parallel computation to improve
scalability.
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Few-shot Learning for eNodeB Performance Metric

Analysis for Service Level Assurance in LTE
Networks [18](Outline) |

e Few-shot Learning for eNodeB Performance Metric Analysis for Service Level

Assurance in LTE Networks [18]
@ eNodeB Performance Metric Analysis for Service Level Assurance in LTE Networks

@ Proposed method
@ Experiments
@ Summary
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Few-shot Learning for eNodeB Performance Metric

Analysis for Service Level Assurance in LTE
Networks [18]
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Service Level Assurance in LTE Networks

@ In LTE networks, the radio communication services to the mobile
users are provided by eNodeBs.

@ A large number of eNodeBs are deployed to cover the entire service
areas spanning various kinds of geographical regions.

@ The state of the eNodeB can be diverse: radio coverage and channel
interference, traffic load in control and data planes, system hardware
and software issues, service management issues.

@ The state of eNodeB that covers a specific area impacts the service
level offered to the customer in that area.

@ It is crucial to understand the state of the eNodeB that covers the
area.
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Analysis of eNodeB’s KPI Data for quality management

@ By analyzing the performance metric generated by eNodeB, we
expect to understand the state of the area that the eNodeB covers.

@ Each eNodeB generates a large number of key performance indicators
(KPls).

@ Operators need to handle hundreds of millions of KPIs to cover the
areas.

@ It is impractical to handle manually such a huge amount of KPI data,
and automation of data processing is therefore desired.
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eNodeB's KPI data
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Figure: The number of labeled data for each eNodeB status.
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Labeling Data

@ A typical workflow of applying machine learning and/or deep learning
comprises of

o (1) the pre-training phase where the classification is done using
unsupervised learning,

o (2) the data annotation phase where the human operators manually
examine the data and attache the label to the data, and

o (3) the supervised learning phase where the classifier is trained using a
set of labeled data.

@ Many supervised machine learning methods need to be trained with
training data annotated with the correct labels.

@ In order to build a good supervised machine learning model, we need
a large number of training data.
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Small Labeled Data

@ For the task of classification, the existing supervised learning
algorithms require a dataset of high quality and quantity of human
annotated data for training.

@ To minimize the human labor intensive and time-consuming dataset
annotation task, it is thus required to find a data efficient learning
algorithm /technique to build a classifier model.

@ Anomalies are difficult to occur in practice, so the anomaly classes are
usually sparse in the dataset. It is extremely important for the
operators to deal with a unbalanced data set where a few class has
only handful data instances while others have a lot of data instances.
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Few-shot Learning

@ Supervised learning requires large amount of labeled training dataset
to build a classifier model.

@ Few-shot learning is a task to adapt new classes not seen in the
training dataset, given only a few labeled example of these classes.

@ To build such a model, recent research employs meta-learning concept
that is trained using a set of episodes each with a small number of
labeled data for training and test.

@ Thus, in order to address the above issues in applying machine
learning algorithms to the eNodeB performance metric analysis, we
propose to use few-shot learning [18].
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Prototypical Network |

e Prototypical Network [10] is a few-shot learning that use neural
networks (NNs).

@ Prototypical Network is based on the idea that the data for each class
is distributed near average of themselves.

@ |t uses the training set to extract a prototype vector from each class
as shown in Fig. 20, and then classifies the inputs in the training set
based on their distance to the prototype of each class as shown in
Fig. 21.
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Prototypical Network
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Figure: Left: Embedding function. Right: Prototype vector calculation using
training set.
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Prototypical Network

Inputs test set

embedding function hg (x)

Figure: Left: Embedding function (same as Fig. 20). Right: Loss calculation
according to distance using test set.
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Embedding Function

@ Embedding function maps discrete object eNodeB performance
metrics to a vector of real numbers so that similar objects are close.

@ We investigate which neural network is suitable for classifying status
of eNodeB in Prototypical Network. We focus on three types of
neural networks: multilayer perceptron (MLP) [5], two-dimensional
convolutional neural networks (2D-CNN) [8] and one-dimensional
convolutional neural networks (1D-CNN).
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Dataset |

@ We collected the 5052 records from eNodeBs deployed in a
production networks.

@ The state of the eNodeB is categorized into 13 labels as listed in
Table 2.

@ The number of labeled data for each eNodeB status is shown in
Table 22.
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Dataset Il

Table: Label associated with eNodeB status.

H Status

label 00 || High traffic condition

label 01 || Weak radio wave coverage

label 02 || High transmission of uplink and downlink data
label_03 || High transmission of downlink data

label_04 || High transmission of uplink data

label 05 || Normal operating condition

label 06 || Uplink control channel interference

label 07 || Uplink traffic channel interference

label_08 || Both control and traffic channel interference
label 09 || Uplink control channel radio quality
label_10 || System hardware processor load

label_11 || Service setup issue

label_12 || Control channel signaling
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Class Distribution
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Figure: The number of labeled data for each eNodeB status.
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Parameters
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Figure: Parameters of MLP
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Parameters

Conv Conv
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Figure: Parameters of 2D-CNN
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Parameters

Conv Conv
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Figure: Parameters of 1D-CNN
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Performance Evaluation
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Figure: Comparison between Prototypical Network and baseline.
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Performance Evaluation
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Figure: Confusion matrix G = 2.
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Performance Evaluation
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Figure: Confusion matrix G = 50.
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Performance Evaluation

@ For visualization of multidimensional embedding points, we employed
T-distributed Stochastic Neighbor Embedding (t-SNE) [13] that can
dimensional reduction for multidimensional data.

@ t-SNE is a nonlinear dimensionality reduction technique well-suited for

embedding high-dimensional data for visualization in a
low-dimensional space of two or three dimensions.
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Performance Evaluation

Figure: Visualization by t-SNE with G =2
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Performance Evaluation

Figure: Visualization by t-SNE with G = 50
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@ We investigate machine learning algorithms to analyze eNodeB
performance metric for service level assurance in LTE networks.

@ To minimize the human labor intensive and time-consuming dataset
annotation task, it is thus required to find a data efficient learning
algorithm /technique to build a classifier model.

@ We proposed a method that uses Prototypical Network as few-shot
learning.

@ We demonstrate that the proposed few-shot learning methods yield
better performance than the existing methods.

@ In particular the proposed few-shot learning method that uses
1D-CNN outperforms all other methods under all conditions evaluated
in the experiments.
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